NEURAL NETWORKS

$(Professional\ Elective-I)$

Course Code	20IT4501D	Year	III	Semester	I
Course Category	PE-I	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Linear algebra, Statistics and Probability
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon Successful completion of course, the student will be able to						
CO1	Understand the fundamentals and types of neural networks, Fuzzy logic principles.	L2				
CO2	Apply Back propagation networks for various problems	L3				
CO3	Use Associative memory and Adoptive resonance theory for real world problems.	L3				
CO4	Analyze the applications of ANN techniques for solving various problems.	L3				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	3												3	
CO2	3					3							3	
CO3	3			3		3							3	
CO4			3			3							3	

	Syllabus					
Unit No	Contents	Mapped CO				
I	Introduction to Artificial Intelligence System: Neural Network, Fuzzy logic, Genetic Algorithm. Fundamentals of Neural Networks: Basic Concepts of Neural Network, Human Brain, Model of Artificial Neuron Neural Network Architecture: Single layer Feed-forward networks, Multilayer Feed-forward networks, Recurrent Networks, Characteristics of Neural networks, Learning methods, Early Neural Network Architectures-Rosenblatt's perceptron, Adaline Network, MADALINE Network.	CO1				
II	Back propagation Networks : Back Propagation networks, Architecture of Back-propagation(BP) Networks, Back-propagation Learning, Effect of Tuning parameters of the Back propagation Neural Network, Selection of various parameters in BPN.	CO1 CO2				
III	Associative Memory: Auto correlators, Hetero correlators, Wang et al"s Multiple Training Encoding Strategy, Exponential BAM, and Associative Memory for Real coded pattern pairs, Applications.	CO1 CO2 CO3				
IV	Adaptive Resonance Theory: Introduction-Cluster structure, vector quantization, Classical ART networks, Simplified ART architectures, ART1-Architectre, Special features of ART1 models, ART1 algorithm, Illustration, ART2-Architecture of ART2, ART2 algorithm, Illustration, Applications-Character recognition using ART1.	CO1 CO2 CO3				
V	Applications of ANN : Introduction, Direct applications-Pattern Classification, Associative memories, Optimization. Application areas-Applications in speech, applications in image processing	CO1 CO2 CO4				

Learning Resources

Text Books

- 1. Neural Networks, Fuzzy Logic and Genetic Algorithms, S.Rajasekaran and G.A. Vijayalakshmi Pai, second edition, 2017, PHI Publications.
- 2. Artificial neural network, B. Yegnanarayana, PHIPublication, eleventh edition 2005.

References

- 1. Neural Networks for Pattern Recognition, Bishop, C. M., 1995, Oxford University Press.
- 2. Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI.
- 3. Build Neural Network with MS Excel sample by Joechoong.
- 1.https://www.coursera.org/learn/neural-networks-deep-learning
- 2. https://www.coursera.org/learn/machine-learning