OPERATING SYSTEMS

Course Code	20IT3501	Year	III	Semester	I
Course Category	PC	Branch	IT	Course Type	Theory
Credits	3	L-T-P 3-0-0 Prerequisites		Programming for Problem Solving, Data structures	
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

	Blooms Level				
Upon successful completion of the course, the student will be able to:					
CO1	CO1 Understand the structure and functionalities of operating systems.				
CO2	2 Apply various concepts to solve problems related to process				
	synchronization, deadlocks and make an effective report.				
CO3	Apply different algorithms of CPU scheduling, Page replacement and disk	L3			
	scheduling.				
CO4	Analyze process, memory and storage management strategies.	L4			
	(Assignment)				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2			3											
CO3		3											3	
CO4		3												

SYLLABUS						
Unit No	Contents	Mapped CO				
	Overview: Introduction - What Operating Systems Do, Computer-	CO1				
	System Organization, Computer-System Architecture, Operating-					
I	System Structure, Operating-System Operations					
	Operating System Structures - Operating-System Services, User and					
	Operating-System Interface, System Calls, Types of System Calls.					
	Process Management: Process Concept, Process Scheduling,					
п	Operations on Processes, Interprocess Communication.	CO1,CO3,CO4				
	Threads - Overview, Multicore Programming, Multithreading Models.					
	Process Scheduling - Basic Concepts, Scheduling Criteria, Scheduling					
	Algorithms (First-Come, First-Served Scheduling, Shortest-Job-First	ed Scheduling, Shortest-Job-First				
	Scheduling, Priority Scheduling, Round-Robin Scheduling.)					
	Process Synchronization: Background, The Critical-Section Problem,					
III	Peterson's Solution, Synchronization Hardware, Mutex Locks,					
	Semaphores, Classic Problems of Synchronization.	CO1, CO2				
	Deadlocks - System Model, Deadlock Characterization, Methods for					
	Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance,					
	Deadlock Detection, Recovery from Deadlock.					

IV	Memory Management: Main Memory- Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Structure of the Page Table. Virtual Memory - Background, Demand Paging, Copy-on-Write, Page Replacement, Basic Page Replacement, FIFO Page Replacement, Optimal Page Replacement, LRU Page Replacement, LRU-Approximation Page Replacement.	CO1, CO3,CO4
V	Storage Management: File–System Interface: File Concept, Access Methods, Directory and Disk Structure. File–System Implementation - File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods. Mass-Storage Structure - Overview of Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, FCFS Scheduling, SSTF Scheduling, SCAN Scheduling, C-SCAN Scheduling, LOOK Scheduling, Selection of a Disk-Scheduling Algorithm.	CO1, CO3,CO4

	Learning Resources
Tex	t book:
1	Operating System Concepts, Abraham Silberchatz, Peter Baer Galvin, Greg Gagne, Ninth Edition,
	2016, Wiley India.
Ref	erences:
1	Operating Systems - Internal and Design Principles, William Stallings, Ninth Edition, 2018, Pearson.
2	Operating Systems - Harvey M.Deitel, Paul J Deitel and David R.Choffnes , Third Edition, 2019,
	Pearson.
3	Operating Systems - A Concept based Approach- D.M. Dhamdhere, Second Edition, 2010, McGraw
	Hill.
e-R	esources and other Digital Material:
1	https://www.youtube.com/watch?v=z3Nw5o9dS7Q&list=PLsylUObW5M3CAGT6OdubyH6FztKfJ
	CcFB
2	http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC51_4pouojjtd4