ELECTRONIC INSTRUMENTATION (Open Elective – I)

Course	20EC2501B	Year	III	Semester	I
Code					
Course	OE - 1	Branch	Common	Course Type	Theory
Category			to All		
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Comprehend the concepts of Electronic instrumentation (L2)					
CO2	Identify the Performance characteristics of instruments (L3)					
CO3	Illustrate the different types of Signal Generator, Wave Analyzers& Bridges (L3)					
CO4	Analyze the various types of Oscilloscopes (L4)					
CO5	Illustrate the concept of various types of Transducers.(L3)					

Mapping of course outcomes with Program outcomes (CO/PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2									2			2	2
CO2	2									2			2	2
CO3	3									2			2	2
CO4		2								2			2	2
CO5	2									2			2	2
Average	2	2								2			2	2

Syllabus							
Unit No.	Contents	Mapped CO					
I	Performance characteristics of instruments: Static characteristics, Errors in Measurement, Dynamic Characteristics, DC Voltmeters- Multi range, Range extension, Thermo couple type RF ammeter, Ohmmeters series type, shunt type, Miltimeteres for Voltage, Current and resistance measurements.	CO1,CO2					
II	Signal Generator Wave Analyzers: Fixed and variable signal	CO1,CO3					

	generators, AF oscillators, Standard signal generator, AF sine and square wave signal generators, Function Generators, Basic wave						
	analyzers, Frequency selective wave analyzers, Hetero- dyne wave						
	analyzer, Harmonic Distortion Analyzers, Spectrum Analyzers.						
	Oscilloscopes: Dual trace oscilloscope, Measurement of amplitude,						
III	period and frequency, Sampling oscilloscope, storage oscilloscope,	CO1,CO4					
	digital readout oscilloscope, digital storage oscilloscope.						
	Bridges: Wheatstone Bridge, AC Bridges Measurement of inductance-						
IV	Maxwell's bridge, Measurement of capacitance - Schearing Bridge.	CO1,CO3					
	Wien Bridge, Q-meter.						
V	Transducers: Resistance, Capacitance, inductance, Strain gauges,						
	LVDT, Piezo Electric transducers, Resistance Thermometers,	CO1 CO5					
	Thermocouples, Thermistors, Sensistors, force, pressure, velocity,	CO1,CO5					
	humidity, moisture, speed, Data acquisition system.						

--

Learning Resources

Text Books

- 1. Electronic instrumentation, H.S.Kalsi, Tata McGraw Hill, 2nd edition 2004.
- 2. Modern Electronic Instrumentation and Measurement Techniques A.D. Helfrick and W.D. Cooper, PHI, 5th Edition, 2002.

Reference Books

- 1. Electronic Instrumentation & Measurements David A. Bell, PHI, 2nd Edition, 2003.
- 2. Electronic Test Instruments, Analog and Digital Measurements Robert A.twitter, Pearson Education, 2nd Edition, 2004
