CONTROL SYSTEMS

Course Code		20EE3501		Year			III	Semester			Ι				
Course Category		Professional Core		Branch		E	EEE	Cour	Course Type		Theory				
Credits		3		L-T-P		3	-0-0	Prere	Prerequisites Signa		gnals and Systems				
Continuous Internal Evaluation		30		Semester End Evaluation			70	Total Marks		ks	1()0			
						Co	urse Oi	utcor	nes						
Upon s	succes	ssful c	omple	etion o	of the	course,	the stu	dent	will be	e able to	С				
CO1	Unde	rstand	l vario	ous mo	odels	to repre	esent the	e line	ar tim	e invar	iant sy	stems	s. (L2)		
CO2	2 Apply the knowledge of engineering fundamentals in control systems, modeling tran						ng transfer								
1	function/state space of the systems and characterize them. (L3)														
CO3 Interpret the LTI system's performance in time and frequency domains. (L3)															
CO4 Analyze the transfer function model of linear control system and stability using various tools (\mathbf{I}, \mathbf{A})															
CO5	Exam	ine th	e state	e of a l	linear	control	system u	ising	state st	bace rep	resenta	ation.	(L4)		
COC	A 1. 2124			4 1 - 4	1		·	1 -			1	<u> </u>	<u> </u>		
CO6 Ability to understand the concepts, investigate various problems of control systems and								stems and,							
Con	tribut	ion of	$\frac{1011}{Cours}$	se Out	come	es towar	de achie	vem	ent of	Progra	m Out	come	s & Str	ength of	
	uioui		Cours		orrels	tions (3	·High	2 veni 2 · Me	ent or		.111 Out 7)	come		cligul of	
	PO1	PO2	PO3	PO4	PO	5 PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	101	102	100	101	10.	100			107	1010	. 011	1012	1501	1502	
CO2	3					1							2	1	
CO3	3												2	1	
CO4		3	1	1									2	1	
CO5		3		1							1		2	1	
CO6			3						3	3		2	2		
Unit							Syllab	us						Mapped	
No.														CO's	
1	Mathematical Modelling of Control Systems: Classification of control systems, Mathematical models – mechanical systems (Translational and Rotational), Concept of transfer function - Finding Transfer functions for electrical networks and mechanical systems. Effects of feedback.							rol nd CO1, for CO2, CO4, CO6							
	Transfer function representation: Transfer function of DC servo motor – AC servo motor. Construction and working of synchro transmitter and receiver.													C er. CO1,	
2	Blo	Block diagram algebra - reduction techniques, representation by signal flow													
	graj	ph – re	educti	on usi	ng m	ason's g	ain for	nula.						CO4,	
														CO6	
	Tin	ne Res	spons	e Ana	lysis	(descrip	tive tre	atme	nt only	y):					
3	Stej	p resp	onse o	of first	t ord	er, seco	nd orde	r sys	tems,	time d	omain	spec	ification	ıs,	
	stea	dy sta	te erro	or and	stati	c error c	onstant	s.						CO1,	
	Sta	bility	Analy	ysis:										CO3,	

	The concept of stability - Routh's stability criterion -limitations of Routh's	CO4,					
	stability, Root locus concept – construction of root loci (simple problems).	CO6					
	Frequency Response Analysis & Stability:	CO1,					
4	Introduction, frequency domain specifications (descriptive treatment only).						
	Stability analysis of Bode plots - Phase margin a Gain margin (simple						
	problems).						
5	State Space Analysis of LTI Systems: Concepts of state, state variables and						
	state model, Conversion of state variable model to transfer function model and						
	transfer function form to state variable form (controllable canonical form),						
	solution of linear homogenous state equations - state transition matrix (Laplace						
	transform method) and its properties, Kalman's test of controllability and						
	observability.	000					
Learning Resources							
Text Books							
1.	Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall of India Pvt. L	$td., 5^{th}$					
	edition, 2010.						
2.	I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age Internation	onal (P)					
	Limited 6 th edition, 2009.						
Reference Books							
1.	A. Nagoor Kani, "Control Systems", RBA Publications, 3 rd edition, 2017.						
2.	Farid Golnaraghi and Benjamin C. Kuo, "Automatic Control Systems", John wiley and						
	son's., 9 th edition, 2010.						
3.	S.Palani, "Control Systems Engineering", Tata Mc Graw Hill Publications, 2 nd	edition,					
	2009.						
e- Re	sources & other digital material						
1.	https://nptel.ac.in/courses/108106098						
2.	https://nptel.ac.in/courses/108107115						
3.	https://freevideolectures.com/course/2337/control-engineering						