DATA STRUCTURES AND ALGORITHMS

Course Code	20ES1502	Year	III	Semester	Ι
Course	ES	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester End	70	Total Marks	100
Internal		Evaluation			
Evaluation					

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of algorithms, time and space complexities,	L2				
	recursion and data structure					
CO2	Apply a suitable data structure to solve a given problem	L3				
CO3	Apply algorithm design technique to construct one for a given problem	L3				
CO4	Analyse the given problem and use a suitable data structure to provide a feasible	L4				
	solution					
CO5	Analyse the given problem and use suitable algorithm techniques to provide a	L4				
	feasible solution					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* -	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO 2
CO1	2				2							2	2	
CO2	2				2								2	
CO3	2		2		2								2	
CO4		3			3								3	
CO5		2			2								2	
Average* (Rounded to nearest integer)	2	3	2		2							2	2	

	Syllabus					
Unit	Unit Contents					
No.		CO				
Ι	Introduction to algorithms: Notion of Algorithm, Fundamentals of	CO1,CO2				
	Algorithmic Problem Solving. Algorithm Specification, Asymptotic	CO4				
	Notations, and Basic Efficiency Classes.					
Introduction to data structures:						
	Linear - Introduction to linked list. Singly-linked list, Singly Circular					
	linked list, and doubly linked list. Time and space complexity of					
	operations.					
II	Stacks, Queue: Definition, operations: array implementation of stack and	CO1,CO2				
	queue, Circular Queue. Time and space complexity of operations.	CO4				
III	Trees: Introduction- Terminology, representation of trees. Binary tree	CO1,CO2				
	traversal - in order, preorder, post order. Time and space complexity of	CO4				

	operations.						
	Binary search trees - Definition, searching BST, insert into BST, delete						
	from a BST, Height of a BST.						
	Graph : Adjacency matrix and list representation, BFS and DFS traversal.						
	Time and space complexity of operations.						
IV	Divide and Conquer: Binary search, Merge sort, Quick Sort.	CO1,CO3					
	Greedy Method: Fractional knapsack problem, Single Source Shortest	CO5					
	path (Dijkstra's). Time and space complexities the problems.						
V	Dynamic Programming : 0/1 Knapsack problem, All-pairs shortest paths,	CO1,CO3					
	Travelling salesman problem. Time and space complexities of the	CO5					
	problems.						

Learning Resources

Textbooks

 Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd Ed., 2002, Pearson.
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, 3rd Ed., 2010, PHI

References

1. T. H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford - Introduction to Algorithms, Stein, 3rd Ed., 2012, MIT Press.

2. Ellis Horowitz, Sartaj Sahni, S. Rajasekharan - Fundamentals of computer algorithms, 2nd Ed., 2008, Universities Press

3. Horowitz, Sahani, Anderson-Freed - Fundamental of Data Structures in C, 2nd Ed., 2008, Universities Press.

4. Debasis Samantha, Classic Data Structures, 2nd Ed., 2009, PHI.

5. Narasimha K - Data Structures and Algorithms Made Easy by 2020., Career Monk Publication

6. A. Levitin - Introduction to the Design & Analysis of Algorithms, 3rd Ed., 2011, Pearson Education.

e-Resources & other digital material

- 1. https://www.geeksforgeeks.org/data-structures/
- 2. https://www.youtube.com/watch?v=0IAPZzGSbME

3. https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

5. https://www.geeksforgeeks.org/fundamentals-of-algorithms/