DIGITAL COMMUNICATIONS LAB

Course Code	20EC3551	Year	III	Semester	Ι
Course	Program Core	Branch	ECE	Course Type	Lab
Category					
Credits	1.5	L-T-P	0-0-3	Prerequisites	Communication
				_	Theory Lab
Continuous	15	Semester	35	Total	50
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes

Upon successful completion of the course, the student will be able to				
1 Demonstrate the performance of Analog to Digital Conversion techniques. (L4)				
Analyze different Digital Modulation & Demodulation schemes (L4)				
CO3 Evaluate various Source & Channel Coding Techniques (L5)				
Design Multiplexing & Demultiplexing scheme (L4)				
Make an effective report based on experiments.				

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-						3-St	rong co	g correlation						
* - Average value indicates course correlation strength with mapped PO														
COs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1		2			2				3				2	
CO2		2			2				3				2	
CO3				2	2				3				2	
CO4		3			3				3				3	
CO5									3	2				
Average *														
(Rounde d to nearest		2		2	2				3	2			2	
integer)														

Have to perform a minimum of 10 Experiments in the given concepts using Hardware or MATLAB programming.

	Syllabus					
Expt. No.	Contents	Mapped CO				
Ι	Generation and Reconstruction of Analog to Digital conversion. (PCM, DPCM & DELTA MODULATION)	CO1				
II	Implementation of Digital Modulation & Demodulations. (BPSK,DPSK& BFSK)	CO2				
III	Implementation of Source Coding Techniques. (HUFFMAN CODING, SHANNON FANO CODING & LZ CODING)	CO3				
IV	Implementation of Channel Coding Techniques.	CO4				

	(LINEAR BLOCK CODES, CYCLIC CODES & CONVOLUTION CODES)	
V	Implementation of Spread Spectrum concepts. (DSSS & FHSS)	CO4

NOTE: OCTAVE/MATLAB/LABVIEW software tools may be used for conducting the experiments

✤ A Minimum of TEN experiments covering all the above topics need to be conducted

Learning Resources						
Text Books						
1. Simon Haykin - Digital communications - John Wiley, 4 th Ed.						
2. John G Proakis - Digital Communications - McGraw Hill, 5th Ed., 1995						
Reference Books						
1. Sam Shanmugam - Analog and Digital Communication System-John Wiley and Sons,3 rd Ed.,2009						
e- Resources & other digital material						
1.https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desktop						
2.https://nptel.ac.in/courses/108/105/108105159/						
