DIGITAL COMMUNICATIONS

Course Code	20EC3501	Year	III	Semester	Ι		
Course	Program Core	Branch	ECE	Course Type	Theory		
Category	_						
Credits	3	L-T-P	3-0-0	Prerequisites	Communication		
					Theory		
Continuous	30	Semester	70	Total Marks:	100		
Internal		End					
Evaluation:		Evaluation:					

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Construct different Baseband Digital Systems (L3)					
CO2	Analyze the parameters of digital Passband and Spread Spectrum modulation Techniques					
	(L4)					
CO3	Develop various Source Coding techniques (L3)					
CO4	Build Coding sequences for different error correcting codes (L3)					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - 1	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3								2	2		2	3	
CO3	3								2	2		2	3	
CO4		3							3	3		3	3	
Average	3	3							2	2		2	3	

Syllabus					
Unit	Contents				
		CO			
	Waveform Coding Techniques: Introduction, Pulse code modulation	CO1,CO2			
	(PCM), DPCM, Delta modulation(DM), ADM, output Signal to				
	quantization Noise ratio in PCM and DM systems, Line Codes, Intersymbol				
Ι	interference, Correlative coding.				
	Digital Modulation Techniques: Introduction, Gram Schmidt	CO1,CO2			
	Orthogonalization procedure, Correlation receiver, Matched filter,				
II	Coherent Phase Shift Keying, Quadrature Phase Shift Keying,				
	Differential Phase Shift keying. Coherent and Non Coherent Frequency				
	Shift Keying, M-ary PSK and M-ary FSK.				
III	Spread-Spectrum Modulation: Introduction, Pseudo-Noise Sequences,	CO1,CO2			
	Direct sequence spread spectrum, Processing Gain, Jamming margin,				
	Frequency Hopping Spread spectrum, Slow frequency Hopping, Fast				
	Frequency Hopping.				

IV	Information Theory: Introduction, information, Entropy, Source Coding Theorem, Lossless Data Compression, ,Shannon-Fano coding, Huffman coding, Lempel-Ziv Coding, Discrete memoryless channels, Mutual information, Channel Capacity, Channel Coding Theorem ,	CO2,CO3					
	Information Capacity Theorem						
	Error Control Coding: Introduction, Linear Block codes, Syndrome and						
	its Properties, Syndrome Decoding, Cyclic Codes, Encoder, Syndrome						
V	calculator, Convolutional Codes, Code Tree, Trellis and State diagram,						
	The Viterbi Algorithm.						

Learning Resources

Text Books:

1. Simon Haykin -Digital communications -, John Wiley, 4th Edition 2010

2. John G Proakis -Digital Communications -, McGraw Hill , 5th Edition, 1995

Reference Books

1. H Taub & D. Schilling, Gautam Sahe -Principles of Communication Systems –, TMH, 3rd Ed.,2007

2. Sam Shanmugam -Analog and Digital Communication System-, John Wiley and Sons, 3^{rd} Edition,2009

3. A B Carlson - Communication systems -, McGraw-Hill, 4th Edition, 2002

4. B Sklar- Digital communications -, Pearson Education, 2nd Edition, 2013

e- Resources & other digital material

1.https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desktop 2.https://nptel.ac.in/courses/108/105/108105159/
