ELECTRONIC INSTRUMENTATION

Course	20EC2501B	Year	III	Semester	I
Code					
Course	Open	Branch	Common to	Course Type	Theory
Category	Elective-I		All		
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Comprehend the concepts of electronic instrumentation (L2)					
CO2	Identify the Performance characteristics of instruments (L3)					
CO3	Illustrate the different types of Signal Generator, Wave Analyzers& Bridges (L3)					
CO4	Analyze the various types of Oscilloscopes (L4)					
CO5	Illustrate the concept of various types of Transducers. (L3)					

Mappi	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2
CO1	2									2			2	2
G02	2									2			2	2
CO2	2									2			2	2
CO3	3									2			2	2
CO4		2								2			2	2
CO5	2									2			2	2
203										2			2	2

Syllabus						
Unit	Unit Contents					
No.						
	Performance characteristics of instruments: Static					
I	characteristics, Errors in Measurement, Dynamic Characteristics,					
	DC Voltmeters- Multi range, Range extension, Thermo couple type	CO1, CO2				
	RF ammeter, Ohmmeters series type, shunt type, Miltimeteres for					
	Voltage, Current and resistance measurements.					
II	Signal Generator Wave Analyzers : Fixed and variable signal	CO1, CO3				
	generators, AF oscillators, Standard signal generator, AF sine and	ĺ				

	square wave signal generators, Function Generators, Basic wave					
	analyzers, Frequency selective wave analyzers, Hetero- dyne wave					
	analyzer, Harmonic Distortion Analyzers, Spectrum Analyzers.					
	Oscilloscopes: Dual trace oscilloscope, Measurement of amplitude,	CO1, CO4				
III	period and frequency, Sampling oscilloscope, storage oscilloscope,					
	digital readout oscilloscope, digital storage oscilloscope.					
	Bridges: Wheatstone Bridge, AC Bridges Measurement of	GO1 GO2				
IV	inductance- Maxwell's bridge, Measurement of capacitance -	CO1, CO3				
	Schearing Bridge. Wien Bridge, Q-meter.					
V	Transducers: Resistance, Capacitance, inductance, Strain gauges,					
	LVDT, Piezo Electric transducers, Resistance Thermometers,	CO1, CO5				
	Thermocouples, Thermistors, Sensistors, force, pressure, velocity,	,				
	humidity, moisture, speed, Data acquisition system.					

--

Learning Resources

Text Books

- 1. Electronic instrumentation, H.S.Kalsi, Tata McGraw Hill, 2nd edition 2004.
- 2. Modern Electronic Instrumentation and Measurement Techniques A.D. Helfrick and W.D. Cooper, PHI, 5th Edition, 2002.

Reference Books

- 1. Electronic Instrumentation & Measurements David A. Bell, PHI, 2nd Edition, 2003.
- $2.\ Electronic\ Test\ Instruments,\ Analog\ and\ Digital\ Measurements-Robert\ A.twitter,\ Pearson\ Education,\ 2nd\ Edition\ ,2004$
