DIGITAL DESIGN USING VERILOG HDL

Course Code	20EC5501	Year	III	Semester	Ι	
Course Category	MINOR	Branch	ECE	Course Type	Theory	
Credits	4	L-T-P	3-1-0	Prerequisites	Digital Logic Design	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70 Total Marks:		100	

	Course Outcomes							
Upon	successful completion of the course, the student will be able to							
CO1	Understand the language constructs and programming fundamentals of Verilog HDL.							
	(L2)							
CO2	Choose the suitable abstraction level for a particular digital design (L3).							
CO3	Construct Combinational and sequential circuits in different modelling styles using							
	Verilog HDL (L3).							
CO4	Analyse and Verify the functionality of digital circuits/systems using test benches							
	(L4).							

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)Note:1- Weak correlation* - Average value indicates course correlation strength with mapped PO

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P O 10	P 0 11	P 0 12	PSO 1	PSO 2
CO1	2									2				
CO2	2									2				
CO3	2								2	2		2		2
CO4		3							2	2		2		2
Averag e*														
(Round ed to	2	3							2	2		2		2
nearest integer)														

Syllabus							
Unit No.	Contents						
Ι	Introduction to Verilog HDL: Verilog as HDL, Levels of Design Description, Concurrency, Program structure, Top-down and Bottom- up design methodology, differences between modules and module instances, parts of a simulation, design block, stimulus block, Verilog Data types and Operators, system tasks, compiler directives.0	CO1, CO2					
II	Gate-Level Modelling: Modelling using basic Verilog gate Primitives,	CO1,					

	Description of and/or and buf/not type gates, rise, fall and turn-off	CO3					
	delays, min, max, and typical delays, Design of Decoders,						
	Multiplexers, Flip-flops, Registers & Counters in Gate-level						
	Modelling.						
	Dataflow Modelling: Continuous assignments, Delay specification,	CO1,					
III	expressions, operators, Design of Decoders, Multiplexers, Flip-flops,						
	Registers & Counters in dataflow model.						
	Behavioral Modelling: Procedural Assignments, Initial and always						
	blocks, blocking and non-blocking statements, delay control,	CO1,					
IV	conditional statements, Multiway branching, loops, sequential and	CO3					
	parallel blocks, Design of Decoders, Multiplexers, Flip-flops, Registers						
	& Counters in Behavioral model.						
	Components Test and Verification: Test Bench - Combinational	CO1,					
V	Circuits Testing, Sequential Circuits Testing, Test Bench Techniques,						
	Design Verification, Assertion Verification.						

Learning Resources

Text Books									
1. Samir	Palnitkar-Verilog	HDL: A	Guide to	Digital	Design	and	Synthesis,	Pearson	
Education, 2 nd Ed., 2009.									
2. Michel	D. Ciletti- Advance	ed Digital l	Design wi	th Verilog	$HDL,2^{n}$	^d Ed.	, PHI, 2009		

Reference Books

1 Padmanabhan, Tripura Sundari -Design through Verilog HDL, Wiley, 2016

2. S.Brown, Zvonko – Vranesic, Fundamentals of Digital Logic with Verilog Design, TMH, 3rd Ed., 2014.

e- Resources

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit /frame/index.html
