ARTIFICIAL NEURAL NETWORKS

Course Code	20EC4501E	Year	III	Semester	I	
Course Category	Engineering	Branch	ECE	Course Type	Theory	
Credits	3	L-T-P 3-0-0 Prerequisites End sig		Engineering Mathematics, signals and systems		
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes					
After successful completion of the course, the student will be able to					
CO1	understand the principles of Neural Networks L2				
CO2	Identify different types of models of artificial neural networks L3.				
CO3	Analyse the feed-forward neural networks. L4				
CO4	Analyse the feedback neural networks. L4				
CO5	Compare different applications of artificial neural networks. L4				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)														
COs	PO	Р	Р	Р	PS	PS								
	1	2	3	4	5	6	7	8	9	0	0	0	01	02
										10	11	12		
CO1	2									2		2		
CO2	2				2					2				
CO3		2								2			2	
CO4		3								3			3	
CO5		2				2	2		2	2				2
Average *														
(Rounde d to nearest integer)	2	2			2	2	2		2	2		2	3	2

Syllabus						
UNIT	Contents					
No.		COs				
Ι	Basics of Artificial Neural Networks: Characteristics of Neural					
	Networks, Historical Development of Neural Network Principles,	CO1,				
	Artificial Neural Networks: Terminology, Models of Neuron, Topology,					
	Basic Learning Laws.					
Π	Activation and Synaptic Dynamics: Introduction, Activation	C01,				
	Dynamics Models, Synaptic Dynamics Models, Learning Methods.					

TTT	Feedforward Neural Network: Introduction, Analysis of Pattern	CO1,				
111	Association Networks, Analysis of Pattern Classification Networks,	CO3				
IV	Feedback Neural Networks: Introduction, Analysis of Linear Auto					
	associative FF Networks, Analysis of Pattern Storage Networks.					
V	Applications of ANN: Introduction, Direct Applications					
		CO5				

Learning Recourses

Text Book(s)

- 1. B. Yegnanarayana Artificial neural network PHI Publication.2005
- 2. S. Raj sekaran, Vijayalakshmi Pari Neural networks, Fuzzy logic and Genetic Algorithms

Reference Books

1. Kevin L. Priddy, Paul E. Keller – Artificial neural networks: An Introduction - SPIE Press, 2005

2. Mohammad H. Hassoun – Fundamentals of artificial neural networks - MIT Press ,1995

e- Resources and other Digital Material

1. https://ocw.mit.edu/courses/9-641j-introduction-to-neural-networks-spring-2005/

2. https://nptel.ac.in/courses/117105084