SENSOR TECHNOLOGY

Course	20EC2501A	Year	III	Semester	I	
Code						
Course	Open	Branch	Common to	Course Type	Theory	
Category	Elective		all			
Credits	3	L-T-P	3-0-0	Prerequisites	Nil	
Continuous	30	Semester	70	Total	100	
Internal		End		Marks:		
Evaluation:		Evaluation:				

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the concept of sensors and its characteristics. (L2)					
CO2	Select the physical principles of sensing based on sensor signals and systems (L3)					
CO3	Identify the sensor interfacing with various electronics circuits (L3)					
CO4	Utilize the practical approach in design of technology based on different sensors.(L3)					
CO5	List various sensor materials and technology used in designing sensors.(L4)					

Mapping of course outcomes with Program outcomes (CO/PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P O 12	PS O1	PS O2
CO1	2					2	2					2		
CO2	3					3	2						3	
CO3	2				2	2	2						2	
CO4	2				2	2	2						2	
CO5		2					2							2
Averag e* (Round ed to nearest integer)	3	2			2	2	2					2	3	2

Syllabus							
Unit	it Contents						
No.							
I	Sensors Fundamentals and Characteristics	CO1,CO2					
	Sensors, Signals and Systems; Sensor Classification; Units of						
	Measurements; Sensor Characteristics						
II	Physical Principles of Sensing	CO1,CO2					
	Electric Charges, Fields, and Potentials; Capacitance; Magnetism;						
	Induction; Resistance; Piezoelectric Effect; Hall Effect; Temperature and						
	Thermal Properties of Material; Heat Transfer; Light; Dynamic Models of						
	Sensor Elements						
III	Interface Electronic Circuits						
	Input Characteristics of Interface Circuits, Amplifiers, Excitation Circuits,						
	Analog to Digital Converters, Direct Digitization and Processing, Bridge						
	Circuits, Data Transmission, Batteries for Low Power Sensors						
IV	Sensors in Different Application Area						
	Occupancy and Motion Detectors; Position, Displacement, and Level;						
	Velocity and Acceleration; Force, Strain, and Tactile Sensors; Pressure						
	Sensors, Temperature Sensors						
V	Sensor Materials and Technologies						
	Materials, Surface Processing, Nano-Technology						
		1					

Learning Resources

Text Books

- 1. J. Fraden, Handbook of Modern Sensors: Physical, Designs, and Applications, AIP Press, Springer
- 2. D. Patranabis, Sensors and Transducers, PHI Publication, New Delhi

Reference Books

1. Mechatronics- Ganesh S. Hegde, Published by University Science Press (An imprint of Laxmi Publication Private Limited).

e- Resources & other digital material

1. http://www.infocobuild.com/education/audio-video-courses/electronics/IndustrialInstrumentation-IIT-Kharagpur/lecture-34.html
