PVP SIDDHARTHA INSTITUTE OF TEHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY Design and Analysis of Algorithms

(Common to CSE & IT)

Course Code	20IT3403	NIT3403 Year II Semester		Semester	II
Course Category	PC	Branch IT Course Type		Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Discrete Mathematical Structures and Data Structures
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes													
Upon	succe	ssful co	mpletio	on of th	ne cour	se, the	studen	t will l	be able	to				
CO1		Understand the fundamental concepts of algorithm analysis and design techniques.								L2				
CO2		Apply various algorithm design techniques for solving problems										L3		
CO3		Analyze the performance of given problem using different algorithm techniques.										L4		
CO4	4	Analyze the given problem and provide the feasible solution. L4												
Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	3
CO2	3								3	3		3	3	3
CO3		3							3	3		3	3	3
CO4		3							3	3		3	3	3

Syllabus					
Unit No	Contents	Mapped CO			
I	Introduction: Notion of Algorithm, Fundamentals of Algorithmic Problem Solving. Fundamentals of the Analysis of Algorithm Efficiency: Analysis framework and Asymptotic Notations and Basic Efficiency Classes, Amortized Analysis. Introduction to Brute Force Technique, Exhaustive Search.	CO1,CO2, CO3			
II	IIDivide and Conquer: Introduction, Merge sort, Quick sort, Binary Search, Finding Maximum and Minimum, Strassen's Matrix Multiplication.				
III	CO1,CO2, CO3,CO4				
IV	Dynamic Programming: Introduction, 0/1 Knapsack problem, All pairs shortest paths, OptimalBinary search trees, Travelling salesman problem.	CO1,CO2, CO3,CO4			
V	 Back Tracking: Introduction, n-Queens problem, Sum of subsets, Hamiltonian cycle. Branch and Bound: Introduction, Assignment problem, Travelling Salesman problem. Introduction to Complexity classes: P and NP Problems, NP-Complete Problems. 	CO1,CO2, CO3,CO4			

Learning Resources

Text Books

- 1. Introduction to the Design & Analysis of Algorithms, Anany Levitin, Third Edition, 2011, Pearson Education.
- 2. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, 2002, Pearson.
- 3. Algorithm Design Techniques, Narasimha Karumanchi, CareerMonk Publications, 2018.

References

- 1. *Introduction to Algorithms*, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Third Edition, 2012, MIT Press.
- 2. *Fundamentals of computer algorithms*, Ellis Horowitz, Sartaj Sahni, S. Rajasekharan, Second Edition, 2008, Universities Press.

e-Resources and other Digital Material

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://www.cmi.ac.in/~madhavan/
- 3. https://www.coursera.org/lecture/analysis-of-algorithms/resources-jMWPy
- 4. https://www.geeksforgeeks.org/fundamentals-of-algorithms/