PVP SIDDHARTHA INSTITUTE OF TEHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY ENGINEERING MATHEMATICS-IV (TRASFORM TECHNIQUES, NUMERICAL METHODS& NUMBER THEORY)

Course Code	20BS1404	Year	II	Semester	II
Course Category	BS	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous		Semester		-	
Internal		End			
Evaluation	30	Evaluation	70	Total Marks	100

Course Outcomes						
Upon Succ	essful completion of course, the student will be able to					
CO1	Understand the basic concepts of Transform Techniques, Numerical Methods and Number Theory	L2				
CO2	Determine Laplace and inverse Laplace transforms of given function & Solving the linear differential Equations using Laplace transforms	L3				
CO3	Apply different Numerical methods to solve the problems of numerical integration and ordinary differential equations	L3				
CO4	Estimate the interpolated values, approximate roots and derivatives	L4				

Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3-High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2	3								3	3			3	
CO3	3								3	3			3	
CO4		3											3	

Unit No	Contents	Mapped COs			
	Laplace Transforms: Definition of Laplace Transform, Transforms of elementary functions, properties of Laplace Transforms, Transforms of	CO1, CO2			
Ι	derivatives, Transforms of integrals, multiplication by t_i^n division by $t(All theorems/properties without proofs) Application: Evaluation of integrals.$				
	Inverse Laplace transforms: Method of partial fractions, other methods of	CO1,			
II	finding inverse Transform, convolution theorem.(All theorems/properties without proofs)	CO2			
	Application: Solving differential equations using Laplace transforms.				
III	Solution of Algebraic and Transcendental Equations: Bisection method,	CO1,			
	method of false position and Newton-Raphson's method.	СО3,			
	Finite differences and Interpolation: Relation between the operators,	CO4			
	interpolation using Newton's forward and backward difference formulae.				
	Interpolation with unequal intervals: Lagrange's formula. (All				
	theorems/properties without proofs)				
	Numerical Solution of Ordinary differential equations: Picard's Method,	CO1,			
IV	Taylor's Series Method, Euler's Method, modified Euler's Method, Runge-	CO3,			
	Kutta method of fourth order for solving first order equations. (All	CO4			
	theorems/properties without proofs)				
	Basic Concepts in Number Theory: Divisibility and the Division	CO1			
V	Algorithm, The Euclidean Algorithm, Modular arithmetic, Prime numbers,				
	Fermat's Theorem and Euler's Theorems, Testing for Primality, Chinese				
	Remainder Theorem. (All theorems without proofs)				

Learning Resources					
Text Book(s)					
1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.					
2. T.K.V.Iyenger, Krishna Gandhi and others, Mathematical Methods by S.Chand.					
3. Cryptography and Network Security- Principles and Practice, William Stallings, Seventh					
Edition 2017, Pearson					
Reference Book(s)					
1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.					

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/ 2. https://nptel.ac.in/courses/106/105/106105162/
- https://nptel.ac.in/courses/111/106/111106139/
 IT Moodle