OPERATING SYSTEMS

Course Code		Year	II	Semester	II
Course Category	Minor	Branch	IT	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Blooms Level					
Upon suc	Upon successful completion of the course, the student will be able to:					
CO1 Understand the structure and functionalities of operating systems.						
CO2	Apply various concepts to solve problems related to process	L3				
	synchronization, deadlocks and make an effective report.					
CO3	CO3 Apply different algorithms of CPU scheduling, Page replacement and					
	disk scheduling.					
CO4	Analyze process, memory and storage management strategies.	L4				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2			3											
CO3		3											3	
CO4		3												

	SYLLABUS				
Unit No	Contents	Mapped CO			
UNIT-1	Overview: Introduction: What Operating Systems Do, Computer-System Organization, Computer-System Architecture, Operating-System Structure, Operating-System Operations Operating System Structures: Operating-System Services, User and Operating-System Interface, System Calls, Types of System Calls.	CO1			
UNIT-2	Process Management: Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication. Threads: Overview, Multicore Programming, Multithreading Models. Process Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms (First-Come, First-Served Scheduling, Shortest-Job-First Scheduling, Priority Scheduling, Round-Robin Scheduling.)	CO1,CO3,CO4			
UNIT-3	Process Synchronization: Background, The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization. Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock.	CO1, CO2			
UNIT-4	Memory Management: Main Memory: Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Structure of the Page Table Virtual Memory: Background, Demand Paging, Copy-on-Write, Page Replacement, Basic Page Replacement, FIFO Page Replacement, Optimal Page Replacement, LRU Page Replacement, LRU-Approximation Page Replacement.	CO1, CO3,CO4			
UNIT-5	Storage Management:	CO1,			

File-System Interface: File Concept, Access Methods, Directory and	CO3,CO4
Disk Structure.	
File-System Implementation: File-System Structure, File-System	
Implementation, Directory Implementation, Allocation Methods.	
Mass-Storage Structure: Overview of Mass-Storage Structure, Disk	
Structure, Disk Attachment, Disk Scheduling, FCFS Scheduling, SSTF	
Scheduling, SCAN Scheduling, C-SCAN Scheduling, LOOK	
Scheduling, Selection of a Disk-Scheduling Algorithm.	

	Learning Resources			
Tex	Text book:			
1	Operating System Concepts, Abraham Silberchatz, Peter Baer Galvin, Greg Gagne, Ninth Edition,			
	2016, Wiley India.			
Ref	erences:			
1	Operating Systems - Internal and Design Principles, William Stallings, Ninth Edition, 2018, Pearson.			
2	Operating Systems - Harvey M.Deitel, Paul J Deitel and David R.Choffnes, Third Edition, 2019,			
	Pearson.			
3	Operating Systems - A Concept based Approach- D.M. Dhamdhere, Second Edition, 2010, McGraw			
	Hill.			
e-R	esources and other Digital Material:			
1	https://www.youtube.com/watch?v=z3Nw5o9dS7Q&list=PLsylUObW5M3CAGT6OdubyH6FztKfJ			
	CcFB			
2	http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC51_4pouojjtd4			