SOLID STATE MICROWAVE DEVICES

Course Code	20EC6401C	Year	II	Semester	II
Course Category	Honors	Branch	ECE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Microwave Engineering
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Analyse various solid state diodes (L4)				
CO2	Operate Transferred-Electron Devices in various applications(L3)				
CO3	Make use of various Microwave Solid State Devices.(L3)				
CO4	Analyze the characteristics of Microwave Transistors (L4).				

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO	РО	РО	PO	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
005	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1		2								2				
CO2	2									3				3
CO3	3									3				
CO4		2								2				
Average														
*														3
(Rounde	2	2								2				
d to	2	3								3				
nearest														
integer)														

Syllabus						
Unit	Contents	Mapped CO				
No.						
Ι	Varactor Diode: Introduction, Analysis of graded junction, Equivalent circuit, Manley Rowe power relation, Applications of Varactor diode- Parametric amplifiers, Parametric Up converter, Noise properties of Parametric amplifiers, Varactor diode Multiplier, Advantages and Limitations of Parametric amplifiers.	CO1				
Ш	Tunnel Diode: Introduction, Principle of operation, Equivalent circuit, Tunnel diode amplifiers, I-V Characteristics of Tunnel diode, Transferred-Electron Devices-Gunn Diodes : current-voltage characteristics, Modes of operation of Gunn diode, Applications of Gunn Diode, LSA Diodes, InP Diodes.	CO1,CO2				

III	PIN Diodes: Description, the I-layer, Equivalent circuit behaviour under reverse bias and forward bias, Diode impedance,	CO1,CO3
	Applications.	
IV	Avalanche Transit-Time Devices: Introduction, Read Diode - Structure, Operation, Carrier current and external current, Output power and Quality factor, IMPATT Diode - Structure, Different doping profile structures, Operation, Small-signal theory, Power output and Efficiency, applications. TRAPATT - Structure, Principle of Operation, Power output and Efficiency, BARITT - Structure, Principle of Operation, Performance and Applications.	CO1,CO3
V	Microwave Transistors: Introduction, Microwave Transistors- physical structure, Transistor Configurations, principle of operation, V-I characteristics, Equivalent circuit, Amplification phenomena, Power- frequency limitations, Hetero-junction Bipolar Transistors (HBTs)- physical structure, Operational Mechanism, Applications	CO3,CO4

Learning Resources

Text Book(s):

1. Samuel Y. Liao, Microwave Devices and Circuits, 3rd Ed., PHI.

2. M.L. Sisodia, Vijay Lakshmi Gupta Microwaves- Introduction to Circuits, Devices and Antennas ,New Age International Publishers,2001.

Reference Books

1. Annapurna Das, Sisir K Das, Vijay Lakshmi Gupta Microwave Engineering, TMH.