PVP SIDDHARTHA INSTITUTE OF TEHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS)

INFORMATION TECHNOLOGY

Fundamentals of Digital Logic Design (Common to CSE & IT)

Course Code	20IT3301 Year		II	Semester	I	
Course Category	PC	Branch	IT	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Basic Electrical &Electronics Engg.	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of digital circuits.	L2			
CO2	Apply minimization techniques to simplify Boolean expressions.	L3			
соз	Apply the principles of digital electronics to design combinational and sequential circuits.	L3			
CO4	Analyze the functionality of combinational circuits and sequential circuits.	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3								3	3			3	
CO3	3								3	3			3	
CO4		3							3	3			3	

	Syllabus					
Unit No	t Contents					
I	Digital Systems and Binary Numbers: Digital Systems, Binary Numbers, Number Base Conversions, Octal and Hexadecimal Numbers, Complements of Numbers, Signed Binary Numbers, Binary codes and Binary Logic.	CO1				
П	Boolean Algebra and Logic Gates: Introduction, Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and properties of Boolean Algebra, Boolean functions, Canonical and Standard Forms. Gate-Level Minimization: Introduction, Map Method-Two variable,	CO1 CO2				
	Three variable K-map's, Four Variable K-Map, Product of Sums Simplification, Don't Care Conditions, NAND and NOR implementation.	CO1,CO2				
Ш	Combinational Logic: Introduction, Combinational Circuit, Analysis Procedure, Design Procedure, Binary adder- sub tractor, Decimal Adder, BCD to Seven Segment Display, Encoders, Decoder, Multiplexers, Demultiplexers.	CO1, CO3,CO4				
IV	Sequential Logic: Introduction, Storage Elements: Latches –SR, D Latches Storage Elements: Flip Flops–SR, JK, D and T Flip Flops, Characteristic tables, Characteristic equation, Excitation tables.	CO1, CO3, CO4				
V	Registers and Counters: Registers, Shift Registers- Serial Transfer, Serial Addition, Universal Shift Register, Ripple Counters-Binary Ripple Counter, BCD Ripple Counter, Synchronous Counters-Binary Counter, Up–Down Binary Counter, BCD Counter, Binary Counter with Parallel Load Other Counters- Ring counter, Johnson counter.	CO1, CO3, CO4				
	1					

Learning Resources

Text Books

1. Digital Design, M. Morris Mano, Michael D.Ciletti, Fifth Edition, 2013, Pearson.

References

- 1. Switching Theory and Finite Automata, Zvi. Kohavi, Niraj K. Jha, Third Edition, 2010, Cambridge, University Press.
- 2. Fundamentals of Digital circuits, A. Anand Kumar, Third Edition, 2013, PHI.

e-Resources & other digital material

- 1. https://nptel.ac.in/courses/106/108/106108099/http://nptel.ac.in/courses/117106086/1
- 2. https://nptel.ac.in/courses/117/105/117105080/
- 3. https://www.udemy.com/course/digital-electronics-logic-design/
- 4. https://learnabout-electronics.org/Digital/dig20.php
- 5. https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm
- 6. https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/