Course Code	20ES1352	Year	II	Semester(s)	Ι
Course Category	Engineering Science	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	BEEE Lab
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

CIRCUIT THEORY LAB

	Course Outcomes				
Upon su	Upon successful completion of the course, the student will be able to				
CO1	Analyze response in a given network by using theorems. (L4)				
CO2	Determine two port network parameters of electrical network and self & mutual inductance of coupled circuits. (L3)				
CO3	Calculate resonance frequency of RLC circuits, three phase power drawn by balanced circuits. (L3)				
CO4	Simulate electrical circuits to verify network theorems and obtain their transient behaviour using PSPICE tools. (L4)				
CO5	Conduct experiments as a team / individual by using equipment available in the laboratory				
CO6	Make an effective report based on experiments				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3		3									3	1
CO2	3			3									3	1
CO3	3			3									3	1
CO4		3		3	3								3	1
CO5					3				3				3	1
CO6										3			3	1

	Syllabus				
Expt.	Contents	Mapped			
No.		CO			
	PART-A(AnyEightExperiments)				
1	Verification of Maximum Power Transfer Theorem	CO1			
2	Verification of Reciprocity Theorem	CO5			
3	Verification of Millman's Theorem	CO6			
4	Verification of Compensation Theorem				
5	Series and Parallel Resonance with frequency variations	CO3			
		CO5			

		CO6
6	Determination of Self, Mutual Inductances and Coefficient of coupling	CO2
7	Determination of impedance and admittance Parameters	CO5
8	Determination of Transmission and hybrid parameters	CO6
9	Measurement of Active& Reactive Power using two wattmeter method	CO3
10	Measurement of Reactive Power using one wattmeter method	CO5
		CO6

	PART-B:PSPICESIMULATIONOFELECTRICCIRCUITS(AnyTwoExperiments)					
11	Mesh and Nodal Analysis using PSpice	CO 4				
12	12 Verification of Thevenin's and Norton's Theorem using PSpice					
13	13 Verification of Superposition theorem using PSpice					
14	DC Transient response using PSpice					
15	AC Transient response using PSpice					
	LearningResources					
	TextBooks					
1. (Charles K.Alexander, Mathew N.O.Sadiku,"Fundamentals of Electric					
(Circuits"(SixthEdition), Tata McGraw-Hill.					
	2. Sudhakar and Shyammohan S Palli, Circuits and Networks: Analysis and Synthesis, FifthEdition,McGraw-HillEducation.					