Offering Branch	MECHANICAL CODE		19ME2701A					
Course category	Inter Disciplinary elective-II	Credits	3					
Course type	Theory	Lecture-Tutorial-Practical	3-0-0					
		Continuous Evaluation:	30					
Pre requisites	NIL	Semester End Evaluation:	70					
		Total Marks:	100					

OPTIMIZATION TECHNIQUES

Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to			
CO1	Apply various Classical optimization techniques	L3		
CO2	Select suitable Numerical method for optimization of Engineering Problems.	L4		
CO3	Analyze multi stage decision making process through dynamic programming	L4		
CO4	Enumerate fundamentals of Integer programming technique	L3		

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (H: High, M: Medium, L: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	2		2		2		2		2	2	2
CO2	2	3	3	2		2		2		2		2	2	2
CO3	2	3	3	2		2		2		2		2	2	2
CO4	2	2	3	2		2		2		2		2	2	2

	Syllabus				
Unit No	Contents	Mapped CO			
Unit-I	 Introduction to optimization: Introduction, engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function, classification of optimization problems, optimization techniques. Classical Optimization techniques: Introduction, single variable optimization, multi variable optimization with no constraints, multi variable optimization with equality constraints-Lagrange multiplier method. 				
Unit-II	Non-linear programming, I : One Dimensional Minimization Methods: Introduction, unimodal function, elimination methods- unrestricted search, exhaustive search, interval halving method, Fibonacci method, golden section method, interpolation method,	CO2			
Unit-III	Non-linear programming II: Direct Search Method- Nelder- Mead Simplex method, Indirect search methods- steepest descent method (Cauchy's method), Newton Method, Marquardt Method	CO2			
Unit-IV	Dynamic Programming: Multistage decision processes, Concepts of sub optimization- calculus method and tabular methods, Linear programming as a case of D.P				

Int	Integer Programming : Introduction, Graphical Representation, Gomory's cutting				
me me	ane method, Balas algorithm for zero-one programming, Branch-and- bound ethod, Penalty Function method; Basic approaches of Interior and Exterior enalty function methods.	CO4			

Learning Resource

Text books:

- 1. S.S.Rao, Engineering optimization theory and practice, , 3rd Edition, New age international, 2007.
- 2. Optimization for Engineering Design by Kalyanmoy Deb, PHI Publishers

Reference books

- 1. H.A.Taha, Operations Research, , 9th Edition, Prentice Hall of India, 2010.
- 2. F.S.Hillier, and G.J.Lieberman, Introduction to Operations Research, , 7th Edition, TMH, 2009.

e- Resources & other digital material

1. https://nptel.ac.in/courses/111/105/111105039/

2. https://nptel.ac.in/courses/106/108/106108056/

3. https://nptel.ac.in/courses/111/104/111104071/

4. https://nptel.ac.in/courses/112/105/112105235/

Course Coordinator

HOD