Course Code	19ME3602	Year	III	Semester	Ι	
Course Category:	Program Core	Branch	ME	Course Type	Theory	
Credits:	3	L - T - P	3 - 0 - 0	Prerequisites:	Nil	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

DESIGN OF MACHINE ELEMENTS

Cours	Course Outcomes						
Upon s	Jpon successful completion of the course, the student will be able to						
CO1	Describe the Design Procedure and understand various design						
	considerations.						
CO2	Determine the size of simple mechanical components subjected to static and L3						
	fluctuating loads						
CO3	Design and analyze riveted, bolted and welded joints under various loading L4						
	conditions						
CO4	Design and analyze cotter joints, spur and helical gears						
CO5	Design and Analyze springs for the given loading						

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	1	1						1		2	3	1
CO2	3	3	1	1						1		2	3	1
CO3	3	3	1	1						1		2	3	1
CO4	3	3	1	1						1		2	3	1
CO5	3	3	1	1						1		2	3	1

Course Content		
UNIT-1	Mechanical Engineering Design: Basic Procedure of Machine Design, Basic Requirements of Machine Elements, Design of Machine Elements, Traditional Design Methods, Design Synthesis, Use of Standards in Design, Selection of Preferred Sizes, esthetic Considerations in Design, Ergonomic Considerations in Design. Mechanical Properties of Engineering Materials, BIS System of Designation of Steels, Selection of Material, Selection of Manufacturing Method.	CO1
UNIT-2	 Design for Static Loads: Modes of failure, design of components subjected to axial, bending, torsional loads. Theories of failure for static loads. Design for Dynamic Loads: Endurance limit, fatigue strength under axial, bending and torsion, stress concentration, notch sensitivity. Types of fluctuating loads, fatigue design for infinite life. 	CO 2

	Fatigue theories of failure. Soderberg, Goodman and modified	
	Goodman criterion for fatigue failure.	
UNIT-3	51 5 51 5	CO3
	riveted joint, eccentrically loaded riveted joints.	
	Bolted Joints: Load on bolt due to initial tightening, external loading,	
	combined loading, eccentrically loaded bolted joints in shear, Eccentric	
	load perpendicular to axis of bolt.	
	Welded Joints: Types of welded joints, Strength of Parallel Fillet	
	welds, Strength of Transverse Fillet welds, Axially Loaded	
	Unsymmetrical Welded Joints, eccentrically loaded welded joints	
UNIT-4	Cotter Joints: Types of cotter joints, Design of Socket and Spigot Joint,	CO4
	Design of Sleeve and Cotter Joint, Design of Gib and Cotter Joint,	
	knuckle joint	
	Spur Gears and Helical Gears: Gear Terminology, Module and Face	
	width-power rating calculations based on strength and wear	
	considerations – Helical Gears – Pressure angle in the normal and	
	transverse plane Equivalent number of teeth Estimating the size of	
	the spur and helical gears.	
UNIT-5	Springs: Types of springs, Terminology of Helical Springs, Styles of	CO5
	End, Stress and Deflection Equations, Series and parallel Connections,	
	Design of Helical springs, Design against Fluctuating load	
	Leaf springs, Design of Leaf spring, nipping of Leaf Spring	

	Learning Resources					
Text	1. V.B. Bhandari, Design of Machine Elements, 3/e, Tata McGraw Hill, 2010.					
Books:						
Reference	1. 1. J.E. Shigley, Mechanical Engineering Design, 2/e, Tata McGraw Hill,					
Books:	1986.					
	2. R.L. Norton, Machine Design an Integrated approach, 2/e, Pearson					
	Education, 2004.					
	M.F.Spotts and T.E.Shoup, Design of Machine Elements, 3/e, Prentice Hall					
	(Pearson education), 2013.					
E-	1.http://ecoursesonline.iasri.res.in/course/view.php?id=521					
Resources	2.https://nptel.ac.in/courses/112/105/112105124/					
& other	3. https://nptel.ac.in/courses/112/105/112105125/					
digital						
Material:						