19ES1451

AI Tools Lab

Offering Branches	CSE,CE,ME			
Course Category:	Engineering Sciences	Credits:	1	
Course Type:	Practical	Lecture-Tutorial- Practical:	0-0-2	
Prerequisites:	Programming Languages – Basics of Python	Continuous Evaluation:	25	
		Semester End Evaluation:	50	
		Total Marks:	75	
Course Outcomes				
Upon successful completion of the course, the student will be able to:				
CO1	Apply various preprocessing techniques and Machine Learning/ Deep Learning methods on different datasets for a given problem.		L3	
CO2	Implement various experiments in Jupyter Notebook Environment.		L3	
CO3	Develop an effective report based on various learning methods implemented.		L3	
CO4	Apply technical knowledge for a given scenario and express with an effective oral communication.		L3	
CO5	Analyze the outputs and visualizations generated for different datasets.		L4	
Course Content				
Exp. No.	Contents			
1	Apply Data pre-processing techniques.		CO1,CO2,CO3, CO4,CO5	
2	Construct a Machine Learning model using supervised learning method.		CO1,CO2,CO3, CO4,CO5	
3	Construct a Machine Learning model using Unsupervised learning method.		CO1, CO2, CO3, CO4,CO5	

	Construct a Machine Learning model using Semi supervised learning	CO1, CO2, CO3,
4	method.	CO4,CO5
5	Develop a Deep Learning model using supervised learning method.	CO1,CO2,CO3,
		CO4,CO5
6	Develop a Deep Learning model using Unsupervised learning	CO1, CO2, CO3,
	method.	CO4,CO5
7	Apply a Convolutional Neural Network for Image Classification.	CO1, CO2, CO3,
		CO4,CO5
8	Build an AI application.	CO1, CO2, CO3,
	Bana an 111 application.	CO4,CO5

Learning Resources

Text Books

- 1. Artificial Intelligence: A Modern Approach, Stuart Russell and Norvig, Third Edition, 2015,
- 2. Pearson Education.
- 3. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press
- **4.** Deep Learning (Adaptive Computation and Machine Learning series), Ian Goodfellow , Yoshua Bengio, Aaron Courville, <u>Francis Bach</u>, 2017, MIT Press

e-Resources & other digital material

- 1. https://github.com/atinesh-s/Coursera-Machine-Learning-Stanford
- 2. https://github.com/Kulbear/deep-learning-coursera

Course Coordinators:

1. Dr. J Rama Devi

(Dr. A Jaya Lakshmi)

_ _ _ _ _ _ _ _ _

Prof. & Head, Dept. of CSE

2. Dr. G Lalitha Kumari

3. Mrs. Y Surekha