ENGINEERING MATHEMATICS-IV (NUMERICAL METHODS, PROBABILITY AND STATISTICS)

Cou		19BS1401	Year	II	Semester	II		
Course Category		Basic Sciences course	Branch	CE/EEE/ ME	Course Type	Theory		
Cred	lits	3	L-T-P	3-0-0	Prerequisites	Nil		
Continuit Inter		30	Semester End Evaluation:	70	Total Marks:	100		
			Course O					
Afte		essful completion of						
CO1		ine approximate root of ating polynomial at g		d apply differe	ent methods to cal	culate the value of		
CO2	Evaluate integrals making use of quadrature formulae and solve ordinary differential equations by Euler's, R.K. methods.							
CO3	Use discrete and continuous distribution models to calculate probabilities for appropriate random variables.							
CO4	O4 Understand and apply the basic concepts of inferences concerning means and proportions to the decision making process.							
CO5	Interpre	t hypotheses test for s	small samples.					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	

UNIT	Contents	Mapped
No.		COs
I	Solution to Algebraic and Transcendental Equations 9 hours Solution of algebraic and transcendental equations: Bisection method and Newton-Raphson's method. Finite differences, relation between operators, interpolation using Newton's forward and backward difference formulae. Interpolation with	CO1
п	unequal intervals: Lagrange's formula. Numerical Differentiation and Integration Numerical Differentiation- Newton's forward and backward difference formulae, numerical integration- trapezoidal rule, Simpson's $\frac{1}{3}^{rd}$ and $\frac{3}{8}^{th}$ rules. Ordinary differential equations: Euler's, modified Euler's, Runge-Kutta method of fourth order for solving first order equations.	CO2

III	Probability Random variables (discrete and continuous), probability density functions, probability distribution: Binomial - Poisson - normal distribution and their properties (mathematical expectation and variance).	CO3
IV	Testing of Hypothesis Formulation of null hypothesis, critical regions, level of significance. Large sample tests: Test for single proportion, difference of proportions, test for single mean and difference of means.	CO4
V	Small Sample Tests 8 hours Student's t-distribution (single mean, two means and paired t-test), Testing of equality of variances (F-test)	CO5

Learning Recourse(s)

Text Book(s)

- 1. B.S. Grewal, *Higher Engineering Mathematics*, Khanna Publishers, 44/e, 2019.
- 2. T.K.V.Iyenger, Krishna Gandhi and others, *Probability & Statistics*, S.Chand.

Reference Book(s)

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.
- 2. Miller and Freund's, *Probability and Statistics for Engineers*, Pearson.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105041/
- 3. https://www.nptel.ac.in/courses/111/106/111106112/
- 4. https://www.nptel.ac.in/courses/111/105/111105090/

Sl.No	Faculty Name	Signature
1	Dr.R.Chudamani	
2	Dr.P.Padmaja	
3	Mr.K.Kiran Kumar	
4	Mrs.M.Prameela	
5	Mr.G.Kiran Kumar	
6	Dr.V.Sitamahalakshmi	
7	Mr.A.C.S.Babu	
8	Mrs.V.S.N.Malleswari	

HOD

ENGINEERING MATHEMATICS-IV PVP (NUMERICAL METHODS, PROBABILITY AND STATISTICS)(Micro Syllabus)

Cou	rse	19BS1401	Year	II	Semester	II		
Coc	de	19221101	1001		Semester			
Course Category		Basic Sciences course	Branch	CE/EEE/ ME	Course Type	Theory		
Cred	dits	3	L-T-P	3-0-0	Prerequisites	Nil		
Inter	inuous rnal nation:	30	Semester End Evaluation:	70	Total Marks:	100		
			Course O					
Aft		essful completion of	,					
CO1		nine approximate roof interpolating poly			ifferent method	s to calculate the		
CO2	Evaluate integrals making use of quadrature formulae and solve ordinary differential equations by Euler's, R.K. methods.							
CO3	use discrete and continuous distribution models to calculate probabilities for appropriate random							
CO4	understand and apply the basic concepts of inferences concerning means and proportions to the decision making process							
CO5		et hypotheses test fo		S				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2		
CO2	3	2										2		
CO3	3	2										2		
CO4	3	2										2		
CO5	3	2										2		

	MICRO SYLLABUS			
UNIT	Contents	Mapped		
No.		Cos		
	Solution of algebraic and transcendental equations: Bisection method and			
т	Newton-Raphson's method. Finite differences, relation between operators,			
1	Newton's forward and backward interpolation problems. Lagrange's formula	CO1		
	for unequally spaced point problems.			
	Numerical Differentiation and Integration : Numerical differentiation, using			
	Newtons forward formula, Newtons backward formula. Numerical integration			
II	trapezoidal rule, Simpsons 1/3 rule, Simpsons 3/8 rule, Problems, . Ordinary	CO2		
	differential equations : Solving first order equations using Euler's method,			
	modified Euler's method, Runge-Kutta method of fourth order .Problems			
	Probability : Random variables: discrete and continuous random variables			
III	problems, probability density functions, probability distribution: Binomial -	CO3		
	Poisson - normal distribution problems.			

IV	Testing of Hypothesis : Formulation of null hypothesis, critical regions, level of significance, confidence interval, Large sample tests: Test for single proportion, difference of proportions, test for single mean and difference of means, problems.	CO4
V	Small Sample Tests : Student's t-distribution, single mean, two means problems using t-test, Testing of equality of variances using F-test.	CO5

Learning Recourse(s)	
Text Book(s)	
1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.	
2. T.K.V.Iyenger, Krishna Gandhi and others, Probability & Statistics, S. Chand.	
Reference Book(s)	
1. Erwi n Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.	

Sl.No	Faculty Name	Signature
1	Dr.R.Chudamani	
2	Dr.P.Padmaja	
3	Mr.K.Kiran Kumar	
4	Mrs.M.Prameela	
5	Mr.G.Kiran Kumar	
6	Dr.V.Sitamahalakshmi	
7	Mr.A.C.S.Babu	
8	Mrs.V.S.N.Malleswari	

Course Coordinator HOD