PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous)

ACADEMIC RULES & REGULATIONS (PVP20) and

B.Tech Course Structure, Syllabus

Applicable for the batch of students admitted from the Academic Year 2020-2021

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous)

AICTE approved, NBA & NAAC A⁺ Accredited, An ISO 9001:2015 certified Institution Permanently Affiliated to Jawaharlal Nehru Technological University Kakinada Kanuru, Vijayawada -520 007, Andhra Pradesh Phone:0866 2581699 E-mail: principal@pvpsiddhartha.ac.in www.pvpsiddhartha.ac.in

w.e.f. A.Y 2020 – 2021

PREFACE

PVP Siddhartha Institute of technology, established in 1998, is one of the seventeen educational institutions sponsored and run by Siddhartha Academy of General & Technical Education. The 250 members of the Academy are a group of industrialists, educationists, auditors and philanthropists with vast experience in their respective fields and above all with an ardent desire to spread quality Education. All the academic organizations of Siddhartha Academy stand symbolic of the pragmatic vision of its founders. PVP Siddhartha Institute of Technology has the advantage of inheriting the higher academic standards. The college is approved by AICTE and is permanently affiliated to JNTUK. It is certified by ISO 9001-2015 for its quality standard. All the UG Programs are accredited by the National Board of Accreditation and NAAC with A⁺ grade. It is an Autonomous institute.

The curriculum is revised continuously to address the challenges of industry and academia and to foster the global competencies among the students. The curriculum is revised thrice since 2012. The present curriculum(PVP20) is designed incorporating the features such as outcome based approach, encouraging self-learning through MOOCs platforms i.e., Swayam, COURSERA, EDX, NPTEL, etc., Transformation of creative ideas into a prototype through Internship & Project, enhancing depth & breadth by introducing more number of programs, open electives in core and multi-disciplinary areas, offering courses by industry experts to improve Industry Institute Interaction in addition to internships at industry and introduction of wide range of value added courses beyond curriculum to choose according to their interest to enhance their employability skills.

Institute Vision

To provide rich ambience for Academic and Professional Excellence, Research, Employability skills, Entrepreneurship and Social responsibility.

Institute Mission

To empower the students with Technical knowledge, Awareness of up-to-date technical trends, Inclination for research in the areas of human needs, Capacity building for Employment / Entrepreneurship, Application of technology for societal needs.

Quality Policy

At PVPSIT, We commit ourselves to offer Quality professional education in engineering & Management by adhering to applicable statutory and regulatory requirements and through continuous improvement in the Quality of our services by,

- Regular up gradation of knowledge and skills of faculty
- Improving the teaching methods and strategies
- Providing state of art infrastructure
- Recruiting competent faculty and maintaining prescribed Teacher Student ratio
- Improving the employability of students
- > Enhanced Collaboration with industry and institutions of National Repute

DEPARTMENT VISION

To mould young and fresh minds into well-disciplined and competent engineers to excel in the field of Electrical & Electronics Engineering to cater the industrial/ societal needs and compete at global level.

DEPARTMENT MISSION

- To produce competent and quality technical professionals with strong basics of electrical engineering principles and techniques.
- To facilitate the students to work with modern tools, state of art technologies, innovative research capabilities besides inculcating leadership abilities and ethical values.

Program Outcomes

- **PO-1: Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO-2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO-3: Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO- 4: Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO-5: Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO-6: The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO-7: Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO-8: Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- **PO-9: Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO-10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO-11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO-12: Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Objectives

- **PSO1:** Apply the allied engineering knowledge, technical skills to analyse and solve the challenges in electrical and electronics engineering.
- **PSO2:** Demonstrate the technical competence in development of innovative and environmental conscious technologies for industry and societal needs.

Program Educational Objectives

- **PEO I :** Have a strong foundation in engineering fundamentals, mathematics, basic sciences, humanities and modern software tools with ability to apply them to conceive, analyze, design and implement solutions to problems in electrical engineering field.
- **PEO II:** Have a broad based background to practice electrical engineering in the areas of control systems, machines, measurements, power systems, power electronics and their applications in industry and government sectors meeting the growing expectations of stake holders.
- **PEO III:** Have requisite skills to excel in a multidisciplinary engineering environment with awareness of contemporary issues, professional responsibility, impact of technology on society, and the need for life-long learning.
- **PEO IV:** Have an ability to pursue higher studies to meet the needs of global standards and participate in team oriented, open ended activities both as team members and as leaders with professional communication skills to compete in global scenario.

CONTENTS

- 1. SHORT TITLE AND COMMENCEMENT
- DEFINITIONS
 ACADEMIC PROGRAMMES

 ACADEMIC PROGRAMMES
 INomenclature of Programmes

 DURATION OF THE PROGRAMMES

 AURATION OF THE PROGRAMMES
 INormal Duration
 AMaximum Duration
 AMINIMUM Duration of Semester

 ADMISSION CRITERIA

 ICATEGORY A Seats

5.2CATEGORY – B Seats

5.3CATEGORY - Lateral Entry Seats

6. CREDIT SYSTEM AND GRADE POINTS

- 6.1Credit Definition
- 6.2 Semester Course Load
- 6.3 Grade Points and Letter Grade for a Course
- 6.4 Semester Grade Point Average (SGPA)
- 6.5 Cumulative Grade Point Average (CGPA)

7. CURRICULUM FRAMEWORK

- 7.1 Regular and Honors B.Tech Programme
- 7.2 General Issues
- 7.3 Curriculum Structure
- 7.4 Honors Programme
- 7.5 Minor Programme
- 7.6 Industrial Collaboration (Case Study)
- 7.7 Mandatory Internships
- 7.8 Skill Oriented Courses
- 7.9 Course Numbering Scheme
- 7.10 Medium of Instruction and Examination
- 7.11 Registration
- 8. CHOICE BASED CREDIT SYSTEM (CBCS)
 - 8.1 CBCS Course Registration Policy
 - 8.2 Continuous Evaluation for CBCS Opted Courses
 - 8.3 Eligibility to Appear CBCS Registered Courses For Semester End Examinations
 - 8.4 CBCS Course Detention
- 9. EXAMINATIONS AND SCHEME OF EVALUATION
 - 9.1 Description of Evaluation
 - 9.2 Continuous Internal Evaluation (CIE)
 - 9.2.1Theory Courses
 - 9.2.2 Mandatory Learning Courses

9.2.3 Drawing Based Courses

9.2.4 Laboratory Courses

9.2.5 MOOCs Courses

- 9.3 Semester End Examinations (SEE)
 - 9.3.1 Theory Courses
 - 9.3.2 Laboratory Courses
 - 9.3.3 Internships
 - 9.3.4 Community Service Project
 - 9.3.5 Major Project
- 9.4 Conditions for Pass Marks
- 9.5 Revaluation
 - 9.5.1 Continuous Internal Evaluation

9.5.2 Semester End Examinations

9.6 Withholding Results

10 CRITERIA TO ATTEND SEMESTER END EXAMINATIONS AND PROMOTION TO HIGHER SEMESTER

- 10.1 Eligibility for Semester End Examinations
- 10.2 Promotion Rules
- 11 SUPPLEMENTARY EXAMINATIONS
 - 11.1 General
 - 11.2 Advanced Supplementary
- 12 READMISSION CRITERIA
- 13 BREAK IN STUDY
- 14 GAP YEAR
- 15 TRANSITORY REGULATIONS
- 16 ELIGIBILITY FOR AWARD OF B.TECH.DEGREE
- 17 CONDUCT AND DISCIPLINE
- 18 MALPRACTICES
- 19 OTHER MATTERS
- 20 GENERAL
- 21 INSTITUTE RULES AND REGULATIONS
- 22 AMENDMENTS TO REGULATIONS

Engineering UG Programmes

Introduction

The redesigned curriculum focused on up skilling the graduates on the skills relevant to the need and demands of the industry. The curriculum mandates students to take up five skill courses which are relevant to the industry from second year onwards, two basic level skill courses, one on soft skills and other two on advanced level skill courses. The students are also given the option of choosing between skill courses offered by the Institute and a certificate course offered by industry, a professional body, APSSDC or any other accredited body.

Another major change brought in the curriculum is the introduction of B.Tech. with Honors or a B.Tech with a Minor. This is to give an opportunity for the fast learners to earn additional credits either in the same domain or in a related domain, making them more proficient in their chosen field of discipline or be a graduate with multidisciplinary knowledge and job ready skills.

Mandatory Internship, both industry and social, is included in the revised curriculum that aims at making engineering graduates connect with the needs of the industry and society at large. It will be mandatory for the students to intern in the industry/field for four to six weeks during the summer vacation and also in the final semester to acquire the skills required for job.

The redesigned curriculum offers academic flexibility by introducing a pool of interdisciplinary and job-oriented skill courses which are integrated in to the curriculum of each branch of engineering, from which a student can pick his choice. Flexibility is not only given to students in the choices of courses, but flexibility is given in choosing courses either from the pool of courses offered by the concerned department or in choosing the courses offered by APSSDC or by any other reputed organization/professional body which offers with certification, as decided by respective BoS. Hence, the students are given wide choice and flexibility to undertake courses, while at the same time offering relevance to the interest of individual student in their own context. The curriculum also gives flexibility to the institution in offering a variety of courses to the students of a particular discipline. The Board of Studies is empowered to identify as many tracks and pools as possible in emerging technologies and industrial relevance, and also in humanities and sciences.

1. SHORT TITLE AND COMMENCEMENT

- a. The regulations listed under this head are common for all degree level undergraduate programmes (B.Tech.), offered by the college with effect from the academic year 2020-21 and they are called as "PVP20" regulations.
- b. The regulations here under are subjected to amendments as may be made by the Academic Council of the college from time to time, keeping in view of the recommendations of the Board of Studies. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the programme, as may be decided by the Academic Council.

2. **DEFINITIONS**

- a. "Commission" means University Grants Commission(UGC);
- b. "Council" means All India Council for Technical Education(AICTE);
- c. "**University**" means Jawaharlal Nehru Technological University Kakinada(JNTUK);
- d. "College" means Prasad V Potluri Siddhartha Institute of Technology, Vijayawada;
- e. An **Academic Programme** means any combination of courses and/or requirements leading to award of a degree.
- f. "**Course**" means a subject either theory or practical identified by its course title and code number and which is normally studied in a semester.
- g. "**Degree**" means an academic degree conferred by the university upon those who complete the under graduate curriculum.
- h. "MOOC" means Massive Open Online Course
- i. "**Regular Students**" means students enrolled into the four year programme in the first year.
- j. "**Lateral Entry Students**" means students enrolled into the four year programme in the second year.

3. ACADEMIC PROGRAMMES

3.1 Nomenclature of Programmes

3.1.1 The nomenclature and its abbreviation given below, shall continue to be used for the Degree programmes under the University, as required by the Council and the Commission:

Bachelor of Technology (B. Tech)

Besides, the name of specialization shall be indicated in brackets after the abbreviation, for example, engineering degree in Mechanical Engineering programme is abbreviated as B.Tech (Mechanical Engineering).

- 3.1.2 Bachelor of Technology (B. Tech.) degree programme is offered in:
 - 1. Civil Engineering(CE)
 - 2. Computer Science and Engineering(CSE)
 - 3. Computer Science and Engineering(AI & ML)
 - 4. Computer Science and Engineering(Data Science)
 - 5. Electronics and Communication Engineering(ECE)
 - 6. Electrical and Electronics Engineering(EEE)
 - 7. Information Technology(IT)
 - 8. Mechanical Engineering(ME)

4. **DURATION OF THE PROGRAMMES**

4.1 Normal Duration

- 4.1.1. The duration of an academic programme shall be four years consisting of eight semesters.
- 4.1.2. The duration of the programme for lateral entry students who are admitted in II year shall be three years that consists of six semesters.

4.2 Maximum Duration

4.2.1 The maximum period for which a student can take to complete a full time academic programme shall be double the normal duration of the programme, i.e., for regular students eight years, for lateral entry students six years.

4.3 Minimum Duration of a Semester

Each semester consists of a minimum of 90 instruction days with about minimum 20 and maximum 33 contact hours per week.

5. ADMISSION CRITERIA

The eligibility criteria for admission into UG Engineering programmes are as per the norms approved by Government of Andhra Pradesh from time to time. The sanctioned seats in each programme in the college are classified into CATEGORY-A, and CATEGORY-B at I year level and only CATEGORY-A at Lateral Entry II year level.

The percentages of Category–A, Category-B and Lateral Entry Seats are decided from time to time by the Government of Andhra Pradesh.

5.1 CATEGORY – A Seats

Category - A seats are filled as per the norms approved by the Government of Andhra Pradesh.

5.2 CATEGORY – B Seats

Category - B seats are filled by the College as per the norms approved by the Government of Andhra Pradesh.

5.3 CATEGORY - Lateral Entry Seats

Lateral entry candidates shall be admitted into the III semester directly as per the norms approved by Government of Andhra Pradesh.

6. CREDIT SYSTEM AND GRADE POINTS

6.1 Credit Definition

'Credit' means quantified and recognized learning. Credit is measured in terms of contact hours per week in a semester. Typically one credit is given to:

- (a) Theory/Tutorial course conducted for one contact period.
- (b) Laboratory course conducted for two contact periods.

Each course is assigned a certain number of credits depending upon the number of contact hours (Lectures/Tutorials/Practical) per week.

The curriculum of the eight semesters B.Tech program is designed to have a total of 160 credits for the award of B.Tech degree.

For lateral entry students, the curriculum of six semesters B.Tech program is designed to have a total of 121 credits for the award of B.Tech degree.

6.2 Semester Course Load

The average course load shall be fixed at 20 credits per semester with its minimum and maximum limits being set at 12 and 23 credits.

6.3 Grade Points and Letter Grade for a Course

The grade points and letter grade will be awarded to each course based on student's performance as per the grading system shown in the Table.

Table: Grading System for B. Tech Programme (PVP20 Regulations)

010	ace and Stade I onne		5414410110)	
Theory / Drawing (Max-100)	Laboratory/ Mini Project/ Internship etc. (Max – 50)	Level	Grade Point	Letter Grade
≥ 90	≥ 45	Outstanding	10	A+
\geq 80 to \leq 89	\geq 40 to \leq 44	Excellent	9	А
≥ 70 to ≤ 79	\geq 35 to \leq 39	Very Good	8	В
\geq 60 to \leq 69	\geq 30 to \leq 34	Good	7	С
\geq 50 to \leq 59	\geq 25 to \leq 29	Fair	6	D
\geq 40 to \leq 49	\geq 20 to \leq 24	Satisfactory	5	Е
< 40	< 20	Fail	0	F (FAIL)
ABSENT	ABSENT	ABSENT	0	AB

Grades and Grade Points (PVP20 Regulations)

* For Major Project same (%) percentages will be followed for grading

6.4 Semester Grade Points Average(SGPA)

The performance of each student at the end of each semester is indicated in terms of SGPA calculated as shown in equation (1)

$$\sum (CR \times GP)$$

SGPA=

 $\frac{\sum (CR \times GP)}{\sum CR \text{ (for all courses offered in the semester)}} - (1)$

Where CR= Credits of a course

GP = Grade points awarded for a course $\sum CR$ = Summation of all the courses offered in the semester

6.5 Cumulative Grade Point Average (CGPA)

The Cumulative Performance of each student at the end of each semester is indicated in terms of CGPA which is calculated as shown in equation (2).

 $CGPA = \frac{\sum CR \times GP}{\sum CR(for all courses offered up to that semester/entire program)} - (2)$

Where CR = Credits of a course

GP = Grade points awarded for a course

Percentage equivalent of CGPA = (CGPA - 0.75) * 10

7.CURRICULUM FRAMEWORK

7.1. Regular and Honors B.Tech Programmes of all Branches

- 1. Award of the Degree: A student will be declared eligible for the award of
 - B. Tech. degree if he/she fulfils the following:
 - i. Pursues a course of study in not less than four and not more than eight academic years.
 - ii. After eight academic years from the year of their admission, he/she shall forfeit their seat in B. Tech course and their admission stands cancelled.
 - iii. Registers for 160 credits and must secure all the 160 credits.
 - iv. A student shall be eligible for the award of B.Tech degree with Honors or Minor if he / she earns 20 credits in addition to the 160 credits. A student shall be permitted to register either for Honors or for Minor and not for both simultaneously.

2. Structure of the Undergraduate Engineering program:

Every course of B.Tech. Program shall be placed in one of the nine categories as listed in table below:

S. No	Category	Code	Suggested breakup of Credits (APSCHE)	Suggested breakup of Credits (AICTE)
1	Humanities and social science including Management courses	HSMC	10.5	12
2	Basic Science courses	BSC	21	25
3	Engineering Science courses	ESC	24	24
4	Professional core Courses	PCC	51	48
5	Open Elective Courses	OEC	12	18
6	Professional Courses Elective	PEC	15	18
7	Internship, project work seminar, Community Service Project	PROJ	16.5	15
8	Mandatory courses	MC	Non- credit	Non- credit
9	Skill Oriented Courses	SC	10	-
Total Credits			160	160

3. Assigning of Credits:

1 Hr. Lecture (L) per week - 1 credit

1 Hr. Tutorial (T) per week - 1 credit

1 Hr. Practical (P) per week - 0.5 credits

2 Hours Practical (Lab)/week - 1 credit

- 4. There shall be mandatory student induction program for fresher's, with a three-week duration before the commencement of first semester. Physical activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to local Areas, Familiarization to Dept./Branch & Innovations etc., shall be included in the guidelines issued by AICTE
- 5. All undergraduate students shall register for NCC/NSS activities. A student will be required to participate in an activity for two hours in a week during second and third semesters. Grade shall be awarded as Completed or Not Completed in the mark sheet on the basis of participation, attendance, performance and behavior, and it is treated as student practice course. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the

degree requirements.

- 6. Courses like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- 7. Institution may swap some of the courses between first and second semesters to balance the workload.
- 8. The concerned Board of studies can assign tutorial hours to such courses wherever it is necessary, but without change in the total number of credits already assigned for semester.
- 9. There shall be 05 Professional Elective courses and 04 Open Elective courses. All the Professional & Open Elective courses shall be offered for 03 credits, wherever lab component is involved it shall be (2-0-2) and without lab component it shall be (3-0-0). If a course comes with a lab component, that component has to be cleared separately. The concerned BOS shall explore the possibility of introducing virtual labs for such courses with lab component.
- 10. All Open Electives are offered to students of all branches in general. However, a student shall choose an Open Elective from the list in such a manner that he/she has not studied the same course in any form during the Programme.
- 11. A student shall be permitted to pursue up to a maximum of two elective courses under MOOCs during the Programme. Each of the courses must be of minimum 12 weeks in duration. Attendance will not be monitored for MOOC courses. Student has to pursue and acquire a certificate for a MOOC course only from the organizations/agencies approved by the BoS in order to earn the 3 credits. The Head of the department shall notify the list of such courses at the beginning of the semester.
- 12. The college shall invite registration forms from the students at the beginning of the semester for offering professional and open elective courses. There shall be a limit on the minimum and maximum number of registrations based on class/section strength.
- 13. Students shall undergo mandatory summer internships for a minimum of four to six weeks duration at the end of second and third year of the Programme. There shall also be mandatory full internship in the final semester of the Programme along with the project work.
- 14. There shall be 05 skill-oriented courses offered during III to VII semesters. Among the five skill courses, four courses shall focus on the basic and advanced skills related to the domain courses and the remaining one shall be a soft skills course.
- 15. Under graduate Degree with Honors / Minor shall be issued by the institute to the students who fulfil all the academic eligibility requirements for the B. Tech program and Honors / Minor program. The objective is to provide additional learning opportunities to academically motivated students.
- 16. Assessment: The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory and 50 marks for practical subject. The

distribution shall be 30 marks for Internal Evaluation and 70 marks for the End Semester Theory Examinations. 15 marks for Internal Evaluation and 35 marks for the End Semester practical Examinations A student has to secure not less than 35% of marks in the end semester examination and minimum 40% of marks in the sum total of internal and end semester examination marks to earn the credits allotted to each course. Detailed guidelines for continuous evaluation shall be planned by concerned combined BOS of the Universities.

17. Attendance Requirements:

- i. A student shall be eligible to appear for end semester examinations if he/she acquires a minimum of 75% of attendance in aggregate of all the subjects in a semester.
- ii. Shortage of Attendance below 65% in aggregate shall in NO case be condoned.
- iii. Condonation for shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- iv. Students whose shortage of attendance is not condoned in any semester are not eligible to take their end semester examination of that class and their registration shall stand cancelled.
- v. A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester, as applicable. They may seek readmission for that semester when offered next.
- vi. A stipulated fee shall be payable towards condonation of shortage of attendance to the college. A student is eligible to write the semester end examinations if he acquires 75% of attendance in aggregate of all the subjects.

7.2 General Issues

- 7.2.1 Curriculum framework is important in setting the right direction for a degree programme as it takes into account the type and quantum of knowledge necessary to be acquired by a student in order to qualify for the award of degree in his/her chosen branch or specialization.
- 7.2.2 Besides, this also helps in assigning the credits for each course, sequencing the courses semester-wise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student in fulfilling the requirements for conferment of degree.
- 7.2.3 Each theory course shall consist of five units.

7.3 Curriculum Structure

The curriculum is designed to facilitate B. Tech (Honors) and B.Tech (Major, Minor) incorporates courses required to attain the expected knowledge, skills and attitude by the time of graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 7.3.1 to7.3.5) to cover the depth and breadth required for the programme and for the attainment of programme outcomes of the corresponding programme.

7.3.1 Institutional Core

Institutional Core consists of the courses required for all UG Engineering Programmes offered in this college. The courses offered under this category cover the required knowledge in the following areas:

a) Basic Sciences:

Basic Science courses include Engineering Physics, Applied Physics, Engineering Physics Lab, Applied Physics Lab Engineering Chemistry, Engineering Chemistry Lab, and Engineering Mathematics, etc.

b) Engineering Sciences:

Engineering Science courses include Problem Solving and Programming, AI Tools, Internet of Things, Design Thinking, Basic Electrical and Electronics Engineering, Engineering Graphics, Problem Solving & Programming Lab, Basic Electrical & Electronics Engineering Lab, AI Tools Lab, Internet of Things Lab, Design Thinking Lab and Basic Workshop, etc.

c) Humanities and Social Sciences:

Humanities and Social Science Courses consist of Communicative English I, Communicative English II, HS Elective, Communicative English-I Lab and Communicative English-II Lab, etc.

7.3.2 Elective Courses

Elective courses are offered across the programmes to enhance the knowledge breadth and professional competency of the students.

Courses	Branch Specific	Compulsory
Elective courses	Professional Electives	Supportive to the discipline courses with expanded scope in a chosen track of specialization or cross track courses
	HS Management Elective	Nurture the student interests in management courses.
	Open Electives	Common to all disciplines that helps general interest of a student

7.3.3 Professional Core

The Professional core consists of set of courses considered which are necessary for the students of the specific programme. The courses under this category satisfy the Programme Specific Criteria prescribed by the appropriate professional societies.

7.3.4 Project

In the final semester, the student should mandatorily undergo internship and in parallel he/she should work on a project with well-defined objectives.

7.3.5 Mandatory Learning Courses

According to the guidelines given by statutory bodies, Courses on Environmental Science, Constitution of India and Engineering Ethics, Life Sciences for Engineers and Life Sciences for Engineers Lab shall be offered. Induction program shall be offered in I semester for all the branches.

7.3.6 Honors Programme

In order to obtain honors degree students shall earn additional 20 credits in addition to the 160 credits for obtaining the UG degree. Students can register for additional courses by satisfying the pre-requisite course(s) to a maximum of 8 credits in each of the semesters from IV semester onwards along with the regular semester courses as prescribed. There is no minimum limit to the credits for taking additional courses.

- 1. Students of a Department/Discipline are eligible to opt for Honors Programme offered by the same Department/Discipline.
 - A student shall be permitted to register for Honors program at the beginning of 4th semester provided that the student must have acquired a minimum of 8.0 CGPA up to the end of 2nd semester without any backlogs. In case of the declaration of the 3rd semester results after the commencement of the 4th semester and if a student fails to score the required minimum of 8 CGPA, his/her registration for Honors Programme stands cancelled and he/she shall continue with the regular Programme.
 - An SGPA and CGPA of 8.0 and above has to be maintained in the subsequent semesters in major degree without any backlogs in order to keep the Honors degree registration active.
 - Should both the SGPA and CGPA of major degree fall below 8.0 in major degree at any point after registering for the Honors; the Honors degree registration will cease to be active.
- 2. Students can select the additional and advanced courses from their respective branch in which they are pursuing the degree and get an honors degree in the same. e.g. If a Mechanical Engineering student completes the selected advanced courses from same branch under this scheme, he/she will be awarded B.Tech. (Honors) in Mechanical Engineering.
- 3. In addition to fulfilling all the requisites of a Regular B.Tech Programme, a student shall earn 20 additional credits to be eligible for the award of B. Tech (Honors) degree. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160 credits).
- 4. Of the 20 additional Credits to be acquired, 16 credits shall be earned by undergoing specified courses listed as pools, with four courses, each carrying 4 credits. The remaining 4 credits must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12weeks as recommended by the Board of studies.
- 5. It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. The courses offered in each pool shall be domain specific courses and advanced courses.
- 6. The concerned BOS shall decide on the minimum enrolments for offering Honors program by the department. If minimum enrolments criteria are not met then the students shall be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BOS.
- 7. Each pool can have theory as well as laboratory courses. If a course comes with a lab component, that component has to be cleared separately. The concerned BOS shall explore the possibility of introducing virtual labs for such courses with lab component.
- 8. MOOC courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Students have to acquire a certificate from the agencies

approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned will be as decided by the Institute/academic council.

- 9. The concerned BOS shall also consider courses listed under professional electives of the respective B. Tech programs for the requirements of B. Tech (Honors). However, a student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- 10. If a student drops or is terminated from the Honors program, the additional credits so far earned cannot be converted into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: The courses which were not done under the dropped Honors will not be shown in the transcript.
- 11. In case a student fails to meet the CGPA requirement for Degree with Honors at any point after registration, he/she will be dropped from the list of students eligible for Degree with Honors and they will receive regular B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- 12. Honors must be completed simultaneously with a major degree program. A student cannot earn Honors after he/she has already earned bachelor's degree.

7.4 Minor Programme:

In order to obtain Minor degree students shall earn additional 20 credits in addition to the 160 credits for obtaining the UG degree. Students can register for additional courses by satisfying the pre-requisite course(s) to a maximum of 8 credits in each of the semesters from IV semester onwards along with the regular semester courses as prescribed. There is no minimum limit to the credits for taking additional courses.

A student shall be permitted to register for Minors program at the beginning of 4th semester subject to a maximum of two additional courses per semester, provided that the student must have acquired 7.75 CGPA (Cumulative Grade point average) up to the end of 2nd semester without any history of backlogs. It is expected that the 3rd semester results may be announced after the commencement of the 4th semester. If a student fails to acquire 7.75 CGPA up to 3rd semester or failed in any of the courses, his registration for Minors program shall stand cancelled.

- An SGPA and CGPA of 7.75 and above has to be maintained in the subsequent semesters in major degree without any backlogs in order to keep the minor registration active.
- Should both the SGPA and CGPA fall below 7.75 in major degree at any point after registering for the minor; the minor registration will cease to be active.
- 1. a) Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department. For example, If Mechanical Engineering student selects subjects from Civil Engineering under this scheme, he/she will get Major degree of Mechanical Engineering with minor degree of Civil Engineering

b) Student can also opt for Industry relevant tracks of any branch to obtain the Minor Degree, for example, a B.Tech Mechanical student can opt for the industry relevant tracks like Data Mining track, IOT track, Machine learning track etc.

- 2. The BOS concerned shall identify as many tracks as possible in the areas of emerging technologies and industrial relevance / demand. For example, the minor tracks can be the fundamental courses in CE, EEE, ME, ECE, CSE, AND IT etc., or industry tracks such as Artificial Intelligence (AI), Machine Learning (ML), Data Science (DS), Robotics, Electric vehicles, VLSI etc.
- 3. The list of disciplines / branches eligible to opt for a particular industry relevant minor specialization shall be clearly mentioned by the respective BOS.
- 4. There shall be no limit on the number of programs offered under Minor. The Institution can offer minor programs in emerging technologies based on expertise in the respective departments or can explore the possibility of collaborating with the relevant industries/agencies in offering the program.
- 5. Out of the 20 Credits, 16 credits shall be earned by undergoing specified courses listed by the concerned BOS along with prerequisites. It is the responsibility of the student to acquire / complete prerequisite before taking the respective course. If a course comes with a lab component, that component has to be cleared separately. A student shall be permitted to choose only those courses that he / she has not studied in any form during the Programme.
- 6. The concerned BOS shall decide on the minimum enrolments for offering Minor program by the department. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BOS.
- 7. A student shall earn additional 20 credits in the specified area to be eligible for the award of B. Tech degree with Minor. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160credits).
- 8. In addition to the 16 credits, students must pursue at least 2 courses through MOOCs. The courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Student has to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned as decided by the Institute/academic council.
- 9. Student can opt for the Industry relevant minor specialization as approved by the concerned departmental BOS. Student can opt the courses from Skill Development Corporation (APSSDC) or can opt the courses from an external agency recommended and approved by concerned BOS and should produce course completion certificate. The Board of studies of the concerned discipline of Engineering shall review such courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest skills based on industrial demand.

- 10. A committee should be formed at the level of College / Universities / department to evaluate the grades / marks given by external agencies to a student which are approved by concerned BOS. Upon completion of courses the departmental committee should convert the obtained grades / marks to the maximum marks assigned to that course. The controller of examinations can take a decision on such conversions and may give appropriate grades.
- 11. If a student drops (or terminated) from the Minor program, they cannot convert the earned credits into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass(P)" grade and also choose to omit the mention of the course as for the following: The courses which were not done under the dropped Minors will not be shown in the transcript.
- 12. In case a student fails to meet the CGPA requirement for B.Tech degree with Minor at any point after registration, he/she will be dropped from the list of students eligible for degree with Minors and they will receive B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- 13. Minor must be completed simultaneously with a major degree program. A student cannot earn the Minor after he / she has already earned bachelor's degree.

7.6 Industrial Collaboration (Case Study)

Institute - Industry linkages refer to the interaction between firms and universities or public research centers with the goal of solving technical problems, working on R&D, innovation projects and gathering scientific as well as technological knowledge. It involves the collaboration of Industries and Institutes in various areas that would foster the research ecosystem in the country and enhance growth of economy, industry and society at large.

The Institution is permitted to design any number of Industry oriented minor tracks as the respective BoS feels necessary. In this process the Institution can plan to have industrial collaborations in designing the minor tracks and to develop the content and certificate programs. Industry giants such as IBM, TCS, WIPRO etc., may be contacted to develop such collaborations. The Universities / Institutions shall also explore the possibilities of collaborations with major Industries in the core sectors and professional bodies to create specialized domain skills.

7.7 Mandatory Internships

- 1. Two summer internships each with a minimum of six weeks duration, done at the end of second and third years, respectively are mandatory. The internship can be done by the students at local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs.
- 2. A supervisor/mentor/advisor has to be allotted to guide the students for taking up the summer internship. The supervisor shall monitor the attendance of the students while taking up the internship. Attendance requirements are as per the norms of the Institute.

- 3. Evaluation of the summer internships shall be through the departmental committee. A student will be required to submit a summer internship report to the concerned department and appear for an oral presentation before the departmental committee consisting of an external examiner; Head of the Department; supervisor of the internship and a senior faculty member of the department. The report and the oral presentation shall carry 40% and 60% weightages respectively.
- 4. It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship.
- 5. In the final semester, the student should mandatorily undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.
- 6. The College shall facilitate and monitor the student internship programs. Completion of internships is mandatory, if any student fails to complete internship, he/she will not be eligible for the award of degree. In such cases, the student shall repeat and complete the internship.

7.8 Skill Oriented Courses

- 1. For skill oriented / skill advanced course, one theory and 2 practical hours or two theory hours may be allotted as per the decision of concerned BOS.
- 2. Out of the five skill courses two shall be skill-oriented courses from the same domain and shall be completed in second year. Of the remaining 3 skill courses, one shall be necessarily be a soft skill course and the remaining 2 shall be skill-advanced courses either from the same domain or Job oriented skill courses, which can be of inter disciplinary nature.
- 3. A pool of interdisciplinary skill oriented courses shall be designed by a common Board of studies by the participating departments / disciplines and the syllabus along with the pre requisites shall be prepared for each of the laboratory infrastructure requirements. The list of such courses shall be included in the curriculum structure of each branch of Engineering, so as to enable the student to choose from the list.
- 4. The student shall be given an option to choose either the skill courses being offered by the college or to choose a certificate course being offered by industries / Professional bodies / APSSDC, COURSERA or any other accredited bodies as approved by the concerned BOS.
- 5. The Board of studies of the concerned discipline of Engineering shall review the skill advanced courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest courses based on industrial demand.
- 6. If a student chooses to take a Certificate Course offered by industries/Professional bodies/APSSDC or any other accredited bodies, in lieu of the skill advanced course offered by the Department, the credits shall be awarded to the student upon producing the Course Completion Certificate from the agency / professional bodies

as approved by the Board of studies.

- 7. If a student prefers to take a certificate course offered by external agency, the department shall mark attendance of the student for the remaining courses in that semester excluding the skill course in all the calculations of mandatory attendance requirements upon producing a valid certificate as approved by the concerned Board of Studies, the student is deemed to have fulfilled the attendance requirement of the course and acquire the credits assigned to the course.
- 8. A committee shall be formed at the level of the college to evaluate the grades / marks given for a course by external agencies and convert to the equivalent marks / grades. The recommended conversions and appropriate grades / marks are to be approved by the Institute / Academic Council.
- 9. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the skill oriented courses.

7.9 Course Numbering Scheme

The Course code consists of Eight / Nine characters. The following is the structure of the course Code (Figure 1).

Course Numbering Scheme (PVP20)

2	0	С	S	3	2	0	1	А
Regu	ulation Course Category		Kind of course	Semeste r	Туре	Course Number	[Elective code]	
Last two Regu offered for P regula	o digits of lation d(i.e. 20 VP20 ations)	HS-Humanities and Social S Management courses BS-Basic Science courses ES-Engineering Science MC- Mandatory Courses Respective Handling depart In case of Professional Core courses department code is CE-Civil Engineering EE- Electrical & Electronics ME- Mechanical Engineerin EC- Electronics and Commu CS- Computer Science & En IT- Information Technology AM-CSE(Artificial Intelligen DS-CSE(Data Science) Respective chosen minor de placed Respective Handling depart	ciences including ment code is placed / Professional Elective s placed: Engineering ginication Engineering gineering ce & Machine Learning) epartment code is le is placed ment code is placed	 Institutional Core(i.e. HS,BS,ES,MC) Open Elective/ Job Oriented Elective Professional Core Professional Core Professional Elective Minor Course Honors Course Humanities and Social Science Elective 	1-First 2-Second 3-Third 4-Fourth 5- Fifth 6-Sixth 7-Seventh 8-Eigth	0-Theory 1-Theory studied in MOOCS Mode 2-Integrated Course (Theory+Lab) 4- NCC/NSS 5- Practical 6-Project Work 7-Seminar	i.e. Course sequence Number in that semester	In case if the course is Elective then this field will specify the elective code (i.e A,B,C)
		SO- Skill Oriented Course SA- Skill Advanced Course SS- Soft Skill Course		8. Skill Oriented/ Skill Advanced/ Soft Skill Course		8. Summer/ Industrial/ Research Internship		A - Summer B – Industrial C - Research
					9. Community Service Project			

Figure 1: Course numbering scheme

7.10 Medium of Instruction and Examination

The medium of instruction and examinations shall be English.

7.11 Registration

Every student has to register himself/herself for the courses in each semester individually at the time as specified in academic calendar.

8. Choice Based Credit System (CBCS)

Choice Based Credit System (CBCS) shall be introduced with effect from 2019-20 academic years, based on guidelines of the statutory bodies in order to promote:

- Activity based learning
- Student centered learning
- Students to choose courses of their choice
- Learning at their own pace

Flexibility is extended to the fast learning students to take the courses of higher semesters in advance as per their convenience to concentrate on their placement activity/ project work, etc., during the VII/VIII semesters.

8.1 CBCS Course Registration Policy

Fast learning students can register for additional courses from higher semesters by satisfying the pre-requisite course(s) to a maximum of 8 credits in each of the semesters from III semester onwards along with the regular semester courses as prescribed. There is no minimum limit to the credits for taking additional courses.

Eligibility for choosing CBCS flexibility:

- **Regular Students (4 Year duration),** entering the nth semester with no backlog courses up to (n-1)th semester, are only eligible to opt for this flexibility.
- Lateral entry students (3 year duration) with 70% Marks in their Diploma are eligible to opt for this flexibility during III and IV Semesters. Those students entering into V/ VI /VII semester with no backlog courses up to (n-
 - 1)th semester, are only eligible to opt for this flexibility.

The list of additional courses offered in the even & odd semesters, registration dates will be notified by the respective departments well in advance.

A student can withdraw from the respective course within 15 days after the commencement of the course.

The choice of utilizing this flexibility is purely optional to the students.

A minimum number of students required to register for an additional course shall be twenty (20). In case, the registered strength for the additional course is less than twenty (20), the course may be offered on the recommendation of the Head of the Department and subsequent approval of the Principal.

8.2 Continuous Internal Evaluation (CIE) for CBCS opted Courses

The contact hours, continuous assessment pattern, eligibility criteria to write end semester examinations and revaluation scheme for these additional courses will be as per the current academic regulations [PVP20].

8.3 Eligibility to appear CBCS registered courses for Semester End Examinations

The registered additional courses will be dealt separately as individual courses for the calculation of attendance and continuous assessment of marks for assessing the eligibility to write the end semester examinations for these courses.

The performance of the student in the registered additional courses will be separately mentioned in the semester end grade card and it will not be taken into account for the calculation of the SGPA for that semester.

The performance of the student in the registered additional courses will be taken into account in the corresponding semesters.

8.4 CBCS Course Detention

- **8.4.1** In case, the student is detained for want of minimum specified attendance and continuous assessment marks criterion either in the regular semester or in the additional courses, he/she will forfeit the eligibility for registering additional courses from that semester onwards. However, the additional courses completed by the students in the earlier semesters will be valid and taken into consideration.
- **8.4.2** In case, the student is detained for want of minimum specified attendance and continuous assessment marks criterion in the regular semester but meets minimum specified attendance and continuous assessment marks criterion in the registered additional courses, he/she shall write the end semester examinations for these additional courses along with the regular students in the corresponding semester only.
- **8.4.3** In case, the student fails / is absent in the end semester examinations of the registered additional courses or in the regular semester courses in a particular semester, he will forfeit the eligibility for registering additional courses from that semester onwards. However, the additional courses completed by the students in the earlier semesters will be valid and taken into consideration. They can write the end semester examinations for additional courses in which they failed/were absent, along with regular students in the corresponding semesters only.
- **8.4.4** The criterion for the promotion to higher semesters will be as per PVP20 regulations, taking only the regular semester courses into consideration for the fast learners.
- **8.4.5** Additional courses, in which the fast learning student fails, will not be considered as backlogs for them.
- **8.4.6** The fast learning students shall register for all the courses of a regular semester excluding the courses completed in the previous semesters.

- **8.4.7** The credits scored by students through CBCS subjects shall not be considered for credit promotion from II year to III year or from III year to IV year B.Tech.
- **8.4.8** The student opting for the said flexibility will be considered for the award of the division on par with other regular students.
- **8.4.9** The students who have earlier history of indulging in malpractices in semester end examinations are not eligible for opting CBCS.
- **8.4.10** If the student fails to register for opted CBCS courses for semester end examination, he/she will forfeit the eligibility for registering additional courses from that semester onwards and marks secured through continuous assessment will not be considered.
- **8.4.11** The choice of utilizing this flexibility is purely optional to the students.
- **8.4.12** If a student fails/absent in a CBCS course, he/she is bound to appear in the same course when studied in regular semester.

9 EXAMINATIONS & SCHEME OF EVALUATION

9.1 Description of Evaluation

- 1. **Continuous Internal Evaluation (CIE):** The performance of the student in each course is evaluated by the faculty/course coordinator all through the semester; with mid-term tests (sessional-1and sessional-2), assignments, project reviews, viva-voce, laboratory assessment and other means covering the entire syllabus of the course.
- 2. Semester End Examination (SEE): It shall be conducted by chief controller of examinations at the end of each semester, as per the academic calendar and with a written examination for theory courses and practical/project examination with built-in oral part for laboratory/project.

9.2 Continuous Internal Evaluation (CIE)

9.2.1 Theory Courses

a) For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one objective examination (20 multiple choice questions) for 10 marks for duration of 20 minutes (ii) one descriptive examination (3 full questions for 5 marks each) for 15 marks for duration of 90 minutes and (iii) one assignment for 5 marks. Mid-1 shall be conducted from first 50% of the syllabi.

b) In the similar lines, the second objective, descriptive examinations, assignment shall be conducted on the rest of the 50% syllabus.

c) The total marks secured by the student in each mid-term examination are evaluated for 30 marks. The first mid marks (Mid-1) consisting of marks of objective examination, descriptive examination and assignment shall be submitted by the concerned teacher to the department examination section within one week after completion of first mid examination.

d) The mid marks submitted to the department examination section shall be displayed in the concerned department notice boards for the benefit of the students.

e) If any discrepancy found in the submitted Mid-1 marks, it shall be brought to the notice of Head of the department within one week from the submission.

f) Second mid marks (Mid-2) consisting of marks of objective examination, descriptive

Examination and assignment shall also be submitted by the concerned teacher to the department examination section within one week after completion of second mid examination and it shall be displayed in the notice boards. If any discrepancy found in the submitted mid-2 marks, it shall be brought to the notice of Head of the department within one week from the submission.

g) Internal marks can be calculated with 80% weightage for better of the two mids and 20% Weightage for other mid exam.

Example:

Mid-1 marks = Marks secured in (Objective-1+Descriptive examination-1 +Assignment-1)

Mid-2 marks = Marks secured in (Objective-2+Descriptive examination-2 +Assignment-2)

Final internal Marks = (Best of (Mid-1/Mid-2) marks x 0.8

+ Least of (Mid-1/Mid-2) marks x 0.2)

h) With the above criteria, concerned departments have to display the consolidated marks obtained by the students in the department notice boards. If any discrepancy found, it shall be brought to the notice of Head of the department through proper channel within one week with all proofs.

9.2.2 Mandatory Learning Courses

Mandatory Course (M.C): Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, Life Sciences for Engineers, etc. non-credit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75% attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the college internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% of the marks for passing the course. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Not-completed (N) will be specified.

9.2.3 Drawing Based Courses:

For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day-to-day work) and 15 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester for 15 marks each and final marks can be calculated with 80% weightage for better of the two tests and 20% weightage for other test and these are to be added to the marks obtained in day to day work.

9.2.4 Laboratory Courses

For practical subjects there shall be continuous evaluation during the semester for 15 internal marks and 35 end examination marks. The internal 15 marks shall be awarded as follows: day today work - 5 marks, Record-5 marks and the remaining 5 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner appointed.

S. No.	Criterion	Marks
1	Day to Day Evaluation	5
2	Record	5
3	Internal Examination	5

Table: Distribution of Marks (CIE)

9.2.5 MOOCs Courses

There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM/NPTEL through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM/NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall pass.

9.3 Semester End Examination (SEE)

9.3.1 Theory Courses:

- a) The semester end examinations will be for 70 marks consisting of five questions carrying 14 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- b) The job oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job oriented skill course at

external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the job oriented skill courses.

9.3.2 Laboratory Courses: 35 marks

i. The Semester end examination for laboratory courses shall be conducted with three hour duration at the end of semester for 35 marks as given below:

S.No.	Criterion	Marks
1	Procedure	5
2	Experiment / Programme Execution	15
3	Result	10
4	Viva-Voce	5

Table : Distribution of Marks (SEE)

ii. Each Semester end Laboratory Examination shall be conducted by an External Examiner along with the Internal Examiner.

9.3.3 Internship: 50 Marks (Only External marks)

Evaluation of the summer internships: It shall be completed in collaboration with local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs in the area of concerned specialization of the UG programme. Students shall pursue this course during summer vacation just before its offering as per course structure. The minimum duration of this course is at least 6 weeks. The student shall register for the course as per course structure after commencement of academic year. A supervisor / mentor / advisor have to be allotted to guide the students for taking up the summer internship. The supervisor shall monitor the attendance of the students while taking up the internship. Attendance requirements are as per the norms of the Institute. After successful completion, students shall submit a summer internship technical report to the concerned department and appear for an oral presentation before the departmental committee consists of an external examiner; Head of the Department; supervisor of the internship and a senior faculty member of the department. A certificate from industry / skill development center shall be included in the report. The report and the oral presentation shall carry 40% and 60% weightages respectively. It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the Institute.

9.3.4 Community Service Project (CSP): 100 Marks

Report on CSP should be submitted by each student. An internal Viva shall also be conducted by a Committee constituted by the principal of the college. The assessment is to be conducted for **100 marks**. The number of credits assigned is 4. Later the marks are converted into

grades and grade points to include finally in the SGPA and CGPA. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the Institute. The students must do the community service project in the vacation period after I-II.

The weightings shall be:

Activ	vity Log 20%	CSP	CSP Implementation 30%		
Report 25%		Pres	entation 25%		
For	Complete	details:	https://www.intuk.edu.in/intuk-dap-community-service-project-		

guidelines-reg/

9.3.5 Major Project

(Project - Project work, seminar and internship in industry):

In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.

Evaluation: The total marks for project work for **200 marks** and distribution shall be **60 marks for internal** and **140 marks** for **external** evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner and is evaluated for 140 marks.

9.4 Conditions for Pass Marks

- I. Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the Institution Examination section from time to time.
- II. To maintain the quality, external examiners and question paper setters shall be selected from premier institutes and Universities, NITs, Autonomous colleges.
- III. For non-credit mandatory courses, like Life sciences for Engineers, Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.

IV. A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/ project etc by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the sum total of the internal marks and end semester examination marks together.

V. Distribution and Weightage of marks:

The assessment of the student's performance in each course will be as per the details

SNo	Component	Internal	External	Total
1	Theory	30	70	100
2	Lab	15	35	50
3	Mandatory	30	70	100
4	Drawing	30	70	100
5	Project	60	140	200
6	Mini Project/Internship/Industrial Training /	-	50	50
	Skill Development Programs/Research Project			

given

9.5 Revaluation

9.5.1 Continuous Internal Evaluation

The continuous Evaluation scripts shall be shown to the students before finalizing the marks. However, if the student has any concern, not addressed before the finalization of marks, he/she may submit the application for revaluation to the concerned head of the department. The Head of the Department may constitute a two-member committee for reevaluating the script. The evaluation of the committee is final and binding.

9.5.2 Semester End Examination

- 1. As per the notification issued by the Controller of Examinations, the students can submit the applications for revaluation, along with the requisite fee receipt for revaluation of his/her answer script(s) of theory course(s), if he/she is not satisfied with the marks obtained.
- 2. The Controller of Examinations shall arrange for re-evaluation of those answer script(s).
- 3. A new external examiner, other than the first examiner, shall reevaluate the answer script(s).
- 4. Revaluation marks will be taken into consideration only if the difference between the two valuations is more than or equal to 15%. Better marks between the two shall be taken into consideration.

However, if the revaluation marks facilitates passing of the candidate, then the revaluation marks will be considered even if the difference of marks is less than 15%.

5. If the difference of marks between the two valuations is more than 20%, the answer script will be referred to third valuation. The average of nearest two marks will be awarded.

9.6 Withholding of Results

If the student has not paid the dues to the college, or if any case of malpractice or indiscipline is pending against him, the result of the student will be kept as withheld and he/she will not be allowed to enter the next semester. His/her degree shall be considered as withheld in such cases.

10 CRITERIA TO ATTEND SEMESTER END EXAMINATION AND PROMOTION TO HIGHER SEMESTER

10.1 Eligibility for Semester End Examinations

- 10.1.1 Students shall put in a minimum average attendance of 75% in the courses. computed by totalling the number of periods of lectures, tutorials, drawing, practical and project work as the case may be, held in every course as the denominator and the total number of periods attended by the student in all the courses put together as the numerator, to be eligible to write semester end examinations.
- 10.1.2 Condonation of shortage in attendance may be recommended by respective Heads of Departments on genuine medical grounds, provided the student puts in at least 65% attendance as calculated above and provided the Principal is satisfied with the genuineness of the reasons and the conduct of the student.
- 10.1.3 Students, having more than 65% and less than 75% of attendance, shall have to pay requisite fee towards condonation.

10.2 Promotion Rules

- **1.** A student shall be promoted from first year to second year if he fulfills the minimum attendance requirements.
- 2. A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
- **3.** A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II

semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

11. SUPPLEMENTARY EXAMINATIONS

1. General

Semester end Supplementary examinations shall be conducted along with regular semester end examinations.

2 Advanced Supplementary Exams

Candidate(s), who fails in Theory or Laboratory courses of VIII semester, can appear for advanced supplementary examination conducted within one month after declaration of the revaluation results. However, those candidates who fail in the advanced supplementary examinations of VIII semester shall appear for subsequent examinations along with regular candidates conducted at the end of the respective academic year.

12. READMISSION CRITERIA

A candidate, who is detained in a semester due to lack of attendance/credits, has to obtain written permission from the Principal for readmission into the same semester after duly fulfilling all the required norms stipulated by the college in addition to paying an administrative fee of **Rs. 1,000/-**

Rules for calculation of attendance for readmitted students

- a) Number of classes conducted shall be counted from the commencement day of the semester concerned, irrespective of the date of payment of tuition fee.
- b) They shall submit a written request to the principal of the college, along with a challan paid towards tuition and other fee, for readmission before the commencement of the class work.
- c) They can get the information regarding date of commencement of class work for each semester that will be made available in the college notice boards/website from time to time.

13 BREAK IN STUDY

Student, who discontinues the studies for valid reason permitted by the principal, shall get readmission into appropriate semester of B.Tech. programme after break-in study, with the prior permission of the Principal and

following the transitory regulations applicable to such batch in which he/she joins. An administrative fee of **Rs**. 1000/-per each year of break in study, in addition to the prescribed tuition and special fee has to be paid by the candidate to condone his/her break in study.

14 GAP YEAR

Gap Year – concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I year/II year/III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation committee at Institution level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

15 TRANSITORY REGULATIONS

A candidate, who is detained or discontinued in a semester, on re-admission, the academic regulations under which he/she has originally admitted will continue to be applicable to him/her on re-admission.

16 ELIGIBILITY FOR AWARD OF B.TECH DEGREE

- 1. The B.Tech. Degree shall be conferred on a candidate who satisfies the following requirements.
 - a) A Regular student (four year programme) shall register and secure himself/herself for **160** Credits
 - b) A Lateral Entry student (three year programme) shall register and secure himself/herself for121 credits

2. Award of Division

The criteria for award of division, after successful completion of programme are as shown in Table:

Class Awarded	CGPA to be secured	Remarks
First class with distinction	≥7.75 (Without any supplementary appearance)	From the CGPA
First class	≥6.75	secured from 100
Second class	≥5.75 to <6.75	credits
Pass Class	>5.00 to <5.75	

Table :	Criteria	for Av	vard of	Division
----------------	----------	--------	---------	----------

Awarded only if all the courses prescribed are cleared in single attempt within four years for regular candidates and three years for lateral entry candidates

- Detained and break-in study candidates are not eligible for the award of First Class with Distinction
- The cases of students who are absent for semester end examination only once in his/her duration of B.Tech. Programme on valid medical

grounds/humanitarian grounds shall also be considered for the award of First class with Distinction subject to the recommendations of the committee constituted by the Principal.

For the purpose of awarding First, Second and Pass Class CGPA obtained in the examinations appeared within the maximum period allowed for the completion of the programme shall be considered.

Consolidated Grade Card

A consolidated grade card containing credits & grades obtained by the students will be issued after successful completion of the four year B.Tech Programme.

17 CONDUCT AND DISCIPLINE

- 1. Students shall conduct themselves within and outside the premises of the Institute in a manner befitting the students of our Institution.
- 2. As per the order of Honorable Supreme Court of India and AICTE guidelines, ragging in any form is considered a criminal offence and is banned. Ragging within or outside any educational institution is prohibited. Ragging means doing an act, that causes or is likely to cause insult or annoyance or fear of apprehension or threat or intimidation or outrage of modesty or injury to a student. Any form of ragging will be severely dealt with as per AP Prohibition of Ragging Act-1997 section-4.

Nature of ragging	Punishment
Teasing, embarrassing and humiliating	Imprisonment up to 6 months or fine up to Rs.1,000/- or both
Assaulting or using criminal force or criminal intimidation	Imprisonment up to 1 year or fine up to Rs.2,000/- or both
Wrongfully restraining or confining or causing hurt	Imprisonment up to 2 years or fine up to Rs.5,000/- or both
Causing grievous hurt kidnapping or raping or committing unnatural offence	Imprisonment up to 5 years and fine up to Rs.10,000/-
Causing death or abetting suicide	Imprisonment up to 10 years and fine up to Rs.50,000/-

Table : Punishments for Ragging

- 3. A student who is convicted of an offence and punished with imprisonment for a term of more than six months shall not be admitted into the institution.
- 4. Whenever any student complains of ragging to the head or manager of an educational institution, such head or manager should inquire into the complaint and if the complaint is prima-facie found true, should suspend the student or students complained against.
- 5. If the head or manager of an educational institution fails or neglects to
take action in the manner specified in the Act, the person shall be deemed to have abetted the offence and shall be punished with the punishment provided for the offence.

- 6. If a student commits suicide due to or in consequence of ragging, the person who commits such ragging shall be deemed to have abetted such suicide.
- 7. The following acts of omission and/or commission shall constitute gross violation of the code of conduct and are liable to invoke disciplinary measures.
- i. Lack of courtesy and decorum; indecent behaviour anywhere within or outside the campus
- **ii.** Possession, consumption or distribution of alcoholic drinks or any kind of narcotics or hallucinogenic drugs.

The following activities are not allowed within the campus:

- Mutilation or unauthorized possession of library books.
- ▶ Noisy and unseemly behaviour, disturbing studies of fellow students.
- Hacking computer systems (such as entering into other person's areas without prior permission, manipulation and/or damage of computer hardware and software or any other cybercrime etc.)
- ➤ Use of mobile phones.
- Plagiarism of any nature.
- Any other act of gross indiscipline as decided by the Institute from time to time.
- Commensurate with the gravity of offense, the punishment may be reprimand, fine, expulsion from the institute/ hostel, debarment from a examination, disallowing the use of certain facilities of the Institute, rustication for a specified period or even outright expulsion from the Institute, or even handing over the case to appropriate law enforcement authorities or the judiciary, as required by the circumstances.
- For an offence committed in (i) a hostel, (ii) a department or in a class room and (iii) elsewhere, the Chief Warden, the Head of the Department and the Principal, respectively, shall have the authority to reprimand or impose fine.
- Cases of adoption of unfair means and/or any malpractice in an examination shall be reported to the Principal for taking appropriate action.
- Unauthorized collection of money in any form is strictly prohibited.
- Detained and break-in-study candidates are allowed into the campus for academic purposes only with the permission from authorities.
- Misconduct committed by a student outside the Institute campus but having the effect of damaging, undermining & tarnishing the image & reputation of the institution will make the student concerned liable for disciplinary action commensurate with the nature and gravity of such misconduct.

- The disciplinary action committee constituted by the Principal, shall be the authority to investigate the details of the offence, and recommend disciplinary action based on the nature and extent of the offence committed.
- Grievance redressal committee, constituted by the Principal, shall deal with all grievances pertaining to the academic/ administrative and disciplinary matters.
- > All the students must abide by the code and conduct rules of the Institute.

18 MALPRACTICES

The Principal shall refer the cases of malpractices by students in internal assessment tests and end semester examinations, to a malpractice enquiry committee constituted for the purpose. The committee shall follow the approved scales of punishment. The committee consists of:

- 1. Heads of Department (Three)
- 2. Controller of Examinations
- 3. Assistant Controller of Examinations

Table – 10: Disciplinary action for malpractices/improper conduct in examinations

	Nature of Malpractices/Improper conduct	Punishment
1 (a)	If the candidate possesses or keeps accessible, any paper, note book, programmable calculators, mobile phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in the examination hall but has not made use of (material shall include any marks on the student's body that can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	If the candidate gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through mobile phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2	If the candidate has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The hall ticket of the candidate is to be cancelled.

3	If the candidate impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.
4	If the candidate smuggles in an answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all other examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5	If the candidate uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6	If the candidate refuses to obey the orders of the Chief Superintendent/Assistant - Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or	In case of students of the Institute, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

	written or by signs or by visible representation, assaults the officer-in- charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which results in damage to or destruction of property in the examination hall or any part of the Institute campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	
7	If the candidate leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all other examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8	If the candidate possesses any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9	If student of the Institute, who is not a candidate for the particular examination or any person not connected with the Institute indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the Institute: Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted for the remaining examinations of the subjects of that semester/ year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the Institute: Will be handed over to police and a police case will be registered against them.

10	If the candidate comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted for the remaining examinations of the subjects of that semester/year.
11	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12	If any malpractice is detected which is not covered in the above clauses 1 to 11, shall be awarded suitable punishment.	

Note: Special squads may be formed to oversee the proper conduct of examinations.

19 OTHER MATTER

- **19.1** Scribe facility is extended to B Tech students strictly following the guidelines issued under F. No. 16-110/2003-DD.III Dt. 26-02-2013 by the Ministry of Social Justice and Empowerment, Department of Disability Affairs, Govt. of India.
- **19.2** Students who are suffering from contagious diseases are not allowed to appear either continuous internal assessment or semester end examinations
- **19.3** The students who participate in coaching/tournaments held at State/National/International levels through University/Indian Olympic Association during semester end examination period will be promoted to subsequent semesters till the entire programme is completed as per the guidelines of University Grants Commission Letter No. F.1-5/88 (SPE/PES), dated18-08-1994.
- **19.4** Based on the recommendations of HOD & Principal, exemption from attending the class work shall be given to those students who secure placement and intend to join as the employer in VIII semester of B.Tech. Special Continuous Internal Evaluation (Assignment Tests, Sessional, etc.,) will be arranged to such candidates separately if necessary. However, they shall appear for Semester End Examinations as per the Academic Calendar
- **19.5** The Principal shall deal with any academic problem, which is not covered under these rules and regulations, in consultation with the Heads of the Departments in an appropriate manner, and subsequently such actions shall be placed before the academic council for ratification. Any emergency modification of regulation, approved in the Heads of the Departments Meetings, shall be reported to the academic council for ratification.

20 GENERAL

- 1 Wherever the words "he", "him", "his", occur in the regulations, they may include "she", "her", "hers".
- 2 The academic regulations should be read as a whole for the purpose of any interpretation.
- 3 In case of any doubt or ambiguity in the interpretation of above rules, the decision of the principal is final.

21 INSTITUTE RULES AND REGULATIONS

- 1 Use of **Mobile phones** is strictly prohibited inside the Institute academic area.
- 2 Students should come to Institute in **proper dress**.
- 3 All students should wear **Identity cards** in the Institute premises.
- 4 Students should be present in their respective classrooms before the commencement of class sharply.
- 5 Students should not leave the Institute premises without prior permission of their respective Heads of the departments during Institute working hours.
- 6 Students should maintain silence in the class rooms during working periods.
- 7 Sitting / wandering of the students at the stair cases, corridors, cycle stands or the areas within the Institute premises is strictly prohibited.
- 8 Usage of Vehicle horn inside the Institute premises is prohibited.

22 AMENDMENTS TO REGULATIONS

The Academic Council may, from time to time, revise, amend or change the regulations, schemes of examination and/or syllabi.

Oratory

PRINCIPAL

B.TECH. COURSE STRUCTURE

ELECTRICAL AND ELECTRONICS ENGINEERING

I D. I een., I Semester								
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20HS1101	Communicative English I	3	3	0	0	30	70	100
20BS1101	Calculus and Linear Algebra	3	3	0	0	30	70	100
20BS1102	Engineering Chemistry	3	3	0	0	30	70	100
20ES1102	Problem Solving & Programming with Python	3	3	0	0	30	70	100
20ES1104	Engineering Graphics	3	1	0	4	30	70	100
20HS1151	Communicative English I Lab	1.5	0	0	3	15	35	50
20BS1151	Engineering Chemistry Lab	1.5	0	0	3	15	35	50
20ES1152	Problem Solving & Programming with Python Lab	1.5	0	0	3	15	35	50
20MC1101	Life Sciences for Engineers	0	2	0	2	30	70	100
Total		19.5	15	0	15	225	525	750

I B.Tech., I Semester

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks	
20HS1201	Communicative English II	3	3	0	0	30	70	100	
20BS1201	Differential Equations and Vector Calculus	3	3	0	0	30	70	100	
20BS1203	Engineering Physics	3	3	0	0	30	70	100	
20ES1201	Basic Electrical & Electronics Engineering	3	3	0	0	30	70	100	
20HS1251	Communicative English II Lab	1.5	0	0	3	15	35	50	
20BS1252	Engineering Physics Lab	1.5	0	0	3	15	35	50	
20ES1251	Basic Electrical & Electronics Engineering Lab	1.5	0	0	3	15	35	50	
20ES1252	Basic Workshop	3	1	0	4	15	35	50	
20MC1241A /20MC1241B	NSS / NCC	0	0	0	2	Complet	npleted / Not completed		
Total		19.5	13	0	15	180	420	600	

I B.Tech., II Semester

L-Lecture T-Tutorial P-Practical

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20BS1302	Numerical Methods & Complex Variables	3	3	0	0	30	70	100
20ES1302	Circuit Theory	3	3	0	0	30	70	100
20EE3301	Electronic Devices & Amplifier Circuits	3	3	0	0	30	70	100
20EE3302	Signals and Systems	3	3	0	0	30	70	100
20EE3303	Electrical Machines-I	3	3	0	0	30	70	100
20ES1352	Circuit Theory Lab	1.5	0	0	3	15	35	50
20EE3351	Electronic Devices & Amplifier Circuits Lab	1.5	0	0	3	15	35	50
20EE3352	Electrical Machines-I Lab	1.5	0	0	3	15	35	50
20808352	Electrical Workshop	2	1	0	2	0	50	50
20MC1341A /20MC1341B	NSS / NCC	-	0	0	2	-	-	-
20EE3391	Community Service Project	4	0	0	-		100	
Total		25.5	16	0	13			

II B.Tech., I Semester

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20ES1401	Programming with C	3	3	0	0	30	70	100
20BS1401	Electromagnetic Field Theory	3	3	0	0	30	70	100
20EE3401	Measurements and Instrumentation	3	3	0	0	30	70	100
20EE3402	Electrical Machines -II	3	3	0	0	30	70	100
20EE3403	Digital and Analog Circuits	3	3	0	0	30	70	100
20ES1451	Programming with C Lab	1.5	0	0	3	15	35	50
20EE3452	Digital and Analog Circuits Lab	1.5	0	0	3	15	35	50
20EE3451	Electrical Machines –II Lab	1.5	0	0	3	15	35	50
20SO8452	Data Structures	2	1	0	2	0	50	50
20MC1402	Environmental Science	-	2	0	0	-	-	-
Total		21.5	18	0	11			

II B.Tech., II Semester

L - Lecture T - Tutorial P – Practical

	HONORS -I												
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks					
20EE6401A	Battery Management System	4	3	1	0	30	70	100					
20EE6401B	Digital System Design with FPGAs	4	3	1	0	30	70	100					
20EE6401C	Modern Control Systems	4	3	1	0	30	70	100					
20EE6401D	Distributed Generation and Microgrids	4	3	1	0	30	70	100					

MINOR COURSES

Course Code	Title	Credits	L	Τ	Р	Continuous Internal	End Semester Examination	Total Marks	Minor in
20CS5401	Computational Thinking	4	4	0	0	30	70	100	CSE
20IT5401	Operating Systems	4	4	0	0	30	70	100	IT
20EC5401	Analog Systems	4	3	1	0	30	70	100	ECE
20EC5402	Microcontrollers and Interfacing	4	3	1	0	30	70	100	IoT
20ME5401	Automobile Engineering	4	3	1	0	30	70	100	Automo bile Engineer ing
20ME5402	Additive Manufacturing	4	3	1	0	30	70	100	Digital Manufac turing
20CE5401A	Solid Mechanics	4	3	1	0	30	70	100	Civil
20CE5401B	Soil Mechanics	4	3	1	0	30	70	100	Civil

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE3501	Control Systems	3	3	0	0	30	70	100
20EE3502	Power Electronics	3	3	0	0	30	70	100
20EE3503	Electrical Power Generation, Transmission and Distribution	3	3	0	0	30	70	100
	Open Elective -I	3	3	0	0	30	70	100
20EE4501	Professional Elective-I	3	3	0	0	30	70	100
20EE3551	Control Systems Lab	1.5	0	0	3	15	35	50
20EE3552	Power Electronics Lab	1.5	0	0	3	15	35	50
20SA8552	JAVA Programming	2	1	0	2	-	50	50
20MC1502	Universal Human Values	0	2	0	0	30	70	100
20EE3581A	Summer Internship	1.5	0	0	0	-	-	-
Total		21.5	18	0	8			

III B.Tech., I Semester

L - Lecture T - Tutorial P – Practical

	Pr	ofessi	onal	Elec	tive-	I		
Course Code	Title	Cre dits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE4501A	Utilization of Electrical Energy	3	3	0	0	30	70	100
20EE4501B	Electrical Machine Design	3	3	0	0	30	70	100
20EE4501C	Renewable Energy Resources	3	3	0	0	30	70	100
20EE4501D	High Voltage Engineering	3	3	0	0	30	70	100
20EE4501E	Computer Organization & Architecture	3	3	0	0	30	70	100

Open Elective -I											
Course Code	Title	Cre dits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks			
20CE2501A	Air Pollution and Control	3	3	0	0	30	70	100			
20EC2501A	Sensor Technology	3	3	0	0	30	70	100			
20EC2501B	Electronic Instrumentation	3	3	0	0	30	70	100			
20EE2501A	Electrical Safety	3	3	0	0	30	70	100			
20IT2501A	Cyber Laws	3	3	0	0	30	70	100			
20ME2501A	Design Thinking	3	3	0	0	30	70	100			
20ME2501B	Logistic and Supply Chain Management	3	3	0	0	30	70	100			

HONORS -II											
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks			
20EE6501A	Computer Aided Power Systems Analysis	4	3	1	0	30	70	100			
20EE6501B	Reactive Power Control in Electric Systems	4	3	1	0	30	70	100			
20EE6501C	Power Systems Dynamics and Control	4	3	1	0	30	70	100			
20EE6501D	EHVAC Transmission	4	3	1	0	30	70	100			

 $L-Lecture \ T \ - \ Tutorial \qquad P-Practical$

MINOR COURSES

Course Code	Title	Credits	L	Т	Р	Continuous Internal	End Semester	Total Marks	Minor in
20CS5501	Data Structure and Algorithms using Java	3	3	0	0	30	70	100	CSE
20CS5551	Data Structure and Algorithms using Java Lab	1	0	0	2	15	35	50	CSE
20IT5501	Computer Networks	4	4	0	0	30	70	100	IT
20EC5501	Digital Design Using Verilog HDL	4	3	1	0	30	70	100	ECE
20EC5502	Sensors and Actuator Devices for IoT	4	3	1	0	30	70	100	ІоТ
20ME5501	Automotive Transmission System	4	3	1	0	30	70	100	Automo bile Engineer ing
20ME5502	Basic manufacturing processes	4	3	1	0	30	70	100	Digital Manufac turing
20CE5501A	Analysis of Structures	4	3	1	0	30	70	100	Civil
20CE5501B	Transportation Engineering	4	3	1	0	30	70	100	Civil

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE3601	Switchgear & Protection	3	3	0	0	30	70	100
20EE3602	Microprocessors and Microcontrollers	3	3	0	0	30	70	100
20EE3603	Power Systems Analysis	3	3	0	0	30	70	100
20EE4601	Professional Elective-II	3	3	0	0	30	70	100
	Open Elective -II	3	3	0	0	30	70	100
20EE3651	Power Systems Lab	1.5	0	0	3	15	35	50
20EE3652	Microprocessors and Microcontrollers Lab	1.5	0	0	3	15	35	50
20EE3653	Electrical Simulation Lab	1.5	0	0	3	15	35	50
20\$\$8651	Soft skills	2	1	0	2	-	50	50
20MC1601	Constitution of India	0	2	0	0	30	70	100
Total	-	21.5	18	0	11			

III B.Tech., II Semester

Professional Elective-II											
Course Code	Title	Cre dits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks			
20EE4601A	Distribution System Planning & Automation	3	3	0	0	30	70	100			
20EE4601B	Electrical Drives	3	3	0	0	30	70	100			
20EE4601C	Digital Signal Processing	3	3	0	0	30	70	100			
20EE4601D	Optimization Techniques	3	3	0	0	30	70	100			
20EE4601E	Computer Networks	3	3	0	0	30	70	100			

Open Elective -II													
Course Code	Title	Cre dits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks					
20CE2601A	Ecology and Environment	3	3	0	0	30	70	100					
20EC2601A	MAT Lab Programming	3	3	0	0	30	70	100					
20EC2601B	TV Engineering	3	3	0	0	30	70	100					
20EE2601A	Energy Management	3	3	0	0	30	70	100					
20IT2601A	Introduction to Data Mining	3	3	0	0	30	70	100					
20ME2601A	Value Engineering	3	3	0	0	30	70	100					
20ME2601B	Human Factors in Engineering	3	3	0	0	30	70	100					

HONORS -III											
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks			
20EE6601A	Industrial Automation & Robotics	4	3	1	0	30	70	100			
20EE6601B	Advanced Power System Protection	4	3	1	0	30	70	100			
20EE6601C	Power System Reliability	4	3	1	0	30	70	100			
20EE6601D	Restructured Power Systems	4	3	1	0	30	70	100			

MINOR COURSES

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks	Minor in
20CS5601	Web Technologies	3	3	0	0	30	70	100	CSE
20CS5651	Web Technologies Lab	1	0	0	2	15	35	50	CSE
20IT5601	Software Engineering	4	4	0	0	30	70	100	IT
20EC5601	Circuit Analysis	4	3	1	0	30	70	100	ECE
20EC5602	Industrial and Medical IoT	4	3	1	0	30	70	100	IoT
20ME5601	Modern Technology in Automobile Engineering	4	3	1	0	30	70	100	Automo bile Engineer ing
20ME5602	Design for Additive Manufacturing	4	3	1	0	30	70	100	Digital Manufac turing
20CE5601A	Basic Mechanics of Fluids	4	3	1	0	30	70	100	Civil

Course Code	Title	Credits	L	Т	P	Continuous Internal	End Semester	Total Marks		
20EE4701	Professional	3	3	0	0	Evaluation 30	Examination70	100		
	Elective-III									
20EE4702	Professional	3	3	0	0	30	70	100		
	Elective-IV									
20EE4703	Professional	3	3	0	0	30	70	100		
	Elective -V									
20HS7701	Humanities and	3	3	0	0	30	70	100		
	Social Sciences Elective									
	Open Elective -III	3	3	0	0	30	70	100		
	Open Elective- IV	3	3	0	0	30	70	100		
20SA8752	IOT Applications to Electrical	2	1	0	2	-	50	50		
	Engineering									
20EE3781B/C	Industrial/Research	3	0	0	0	-	-	-		
	Internship									
Total	Total				2					
L - Lecture T - Tutorial P – Practical										

IV B.Tech., I Semester

Professional Elective-III Continuous End Total Р Course Title Credits L Т Internal Semester Marks Code Evaluation Examination 20EE4701A Power System 3 3 0 0 30 70 100 Operation and control 20EE4701B Energy Conservation 3 3 0 0 30 70 100 and Audit 20EE4701C Power Quality 3 3 0 0 30 70 100 VLSI Design 20EE4701D 3 3 0 0 30 70 100 20EE4701E Operating Systems 3 3 0 0 30 70 100

Professional Elective-IV											
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks			
20EE4702A	Real Time Control of Power Systems	3	3	0	0	30	70	100			
20EE4702B	Electrical Vehicles	3	3	0	0	30	70	100			
20EE4702C	Digital Control Systems	3	3	0	0	30	70	100			
20EE4702D	Embedded Systems	3	3	0	0	30	70	100			
20EE4702E	Database Management Systems	3	3	0	0	30	70	100			

Professional Elective-V												
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks				
20EE4703A	Smart Grid Technologies	3	3	0	0	30	70	100				
20EE4703B	AI Techniques in Electrical Engineering	3	3	0	0	30	70	100				
20EE4703C	HVDC and FACTS	3	3	0	0	30	70	100				
20EE4703D	Switched Mode Power Conversion	3	3	0	0	30	70	100				
20EE4703E	Machine Learning	3	3	0	0	30	70	100				

	HUMANITIES AND SOCIAL SCIENCES ELECTIVE COURSES											
Course Code	Title	Cre dits	L	T	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks				
20HS7701A	Managerial Economics and Financial Accountancy	3	3	0	0	30	70	100				
20HS7701B	Human Resource Management	3	3	0	0	30	70	100				
20HS7701C	Entrepreneurship Management	3	3	0	0	30	70	100				
20HS7701D	Organizational Behavior	3	3	0	0	30	70	100				
20HS7701E	Construction Management	3	3	0	0	30	70	100				
20HS7701F	Industrial Engineering Management	3	3	0	0	30	70	100				
20HS7701G	Project Management	3	3	0	0	30	70	100				

		Open	Elect	ive	-III			
Course Code	Title	Cre dits	L			Continuous Internal Evaluation	End Semester Examination	Total Marks
20CE2701A	Disaster Management and Preparedness	3	3	0	0	30	70	100
20EC2701B	Embedded and Real time Systems	3	3	0	0	30	70	100
20EC2701C	Research Methodology	3	3	0	0	30	70	100
20EC2701B	E-Waste Management	3	3	0	0	30	70	100
20IT2701A	Fundamentals of Data Science	3	3	0	0	30	70	100
20ME2701A	Operations Research	3	3	0	0	30	70	100
20ME2701B	Management Information Systems	3	3	0	0	30	70	100

		Open	Elect	tive	-IV			
Course Code	Title	Ĉre dits	L	Τ	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20CE2702A	Environmental Management & Audit	3	3	0	0	30	70	100
20CS2702A	Data Base Management Systems	3	3	0	0	30	70	100
20EC2702A	Telecommunications	3	3	0	0	30	70	100
20EC2702B	Satellite Communications	3	3	0	0	30	70	100
20IT2702A	Fundamentals of Artificial Intelligence	3	3	0	0	30	70	100
20ME2702A	Mechatronics	3	3	0	0	30	70	100
20ME2702B	Robotics	3	3	0	0	30	70	100

	HONORS -IV													
Course Code	Title	Credit s	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks						
20EE6701A	Advanced Electrical Drives	4	3	1	0	30	70	100						
20EE6701B	Grid Integration of Renewable Energy Systems	4	3	1	0	30	70	100						
20EE6701C	Special Electrical Machines	4	3	1	0	30	70	100						
20EE6701D	Semiconductor Device Modeling	4	3	1	0	30	70	100						

MINOR COURSES

Course Code	Title	Credits	L	Τ	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks	Minor in
20CS5701	Cloud Computing	4	4	0	0	30	70	100	CSE
20IT5701	Cloud Computing	4	4	0	0	30	70	100	IT
20EC5701	Communication Systems	4	3	1	0	30	70	100	ECE
20EC5702	IOT Networks	4	3	1	0	30	70	100	IoT
20ME5701	Alternate Fuels and Emission control in Automotive	4	3	1	0	30	70	100	Automo bile Engineer ing
20ME5702	INDUSTRY 4.0 and IIoT	4	3	1	0	30	70	100	Digital Manufac turing
20CE5701A	Basic Surveying	4	3	1	0	30	70	100	Civil

L - Lecture T - Tutorial P – Practical

Minor	Minor in CSE (MOOC's)										
S.No	Title	Credits									
1	Introduction to Machine Learning	2									
2	Data Science for Engineers	2									
3	Introduction to Artificial Intelligence	2									

IV B.Tech., II Semester

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE3861	Project work	8	0	0	0	60	140	200
Total		8		0	0			

L-Lecture T-Tutorial P-Practical

I B.TECH I SEMESTER SYLLABUS

	<u>I</u>	B.Tech., I	Seme	<u>ster</u>				
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20HS1101	Communicative English I	3	3	0	0	30	70	100
20BS1101	Calculus and Linear Algebra	3	3	0	0	30	70	100
20BS1102	Engineering Chemistry	3	3	0	0	30	70	100
20ES1102	Problem Solving & Programming with Python	3	3	0	0	30	70	100
20ES1104	Engineering Graphics	3	1	0	4	30	70	100
20HS1151	Communicative English I Lab	1.5	0	0	3	15	35	50
20BS1151	Engineering Chemistry Lab	1.5	0	0	3	15	35	50
20ES1152	Problem Solving & Programming with Python Lab	1.5	0	0	3	15	35	50
20MC1101	Life Sciences for Engineers	0	2	0	2	30	70	100
Total		19.5	15	0	15	225	525	750

				C	<u>OMM</u>	UNIC	ATIV	E ENG	LISH	<u> </u>				
C	'ourse Code		20HS	1101		Year			Ι	5	Semeste	r	Ι	
Ca Ca	'ourse ategory	7	Huma	nities]	Brancl	h	E	EE	Co	ourse Ty	pe	Theo	ory
C	redits		3			L-T-P	•	3-	0-0	Pr	erequisi	ites	Ni	1
Cor In Eva	ntinuou Iternal aluatio	us on	30)	Sen Ev	nester valuati	End ion		70		Total Marks		10	0
					ł	Co	ourse (Outcon	ies					
Upon	succes	sful o	completi	on of the	he cou	rse, the	e stude	nt will	be able	e to				
CO1	Unc	lersta	and the co	oncept	of LSI	RW an	d basic	: gramn	nar (L2	2)				
CO2	Ap	ply gi	rammar t	o vario	ous situ	ations	(L3)							
CO3	Pra	ctice	different	styles	of Rea	ading a	ind Co	mprehe	nding	(L3)				
CO4	CO4 Illustrate the text to process the information for various purposes. (L4)													
<u>CO5</u>	CO5 Reframe the text for effective communication. (L4)													
	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	DO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												DSO2
CO1	101	102	2 105	104	105	100	107	108	109	1010	1011	1012	1 1	1502
CO2										3		3	1	
CO3									3	3		3	1	
CO4										3		3	1	
CO5									3	3		3	1	
							Syll	abus						
Unit No.						S	Syllabu	IS					Ma C	pped O's
1	Re spe Re top pan Gr Ve sin Qu	ading ecific ading bic, s agrap amm rbs, gular estio	g: Skim pieces o g for Wi ummariz bh. nar and Nouns, A and plui n form -	ming t f inform riting: ing the Vocab Adjecti ral; Bas wh-que	o get mation Begin e mair ulary: ves ar sic sen estions	the m nings a n idea Conte nd Adv tence s s; Word	ain id and end and/or ent wor verbs; tructur d order	ea of a lings of provie ds and Nouns: res; Sin in sent	a text; f parag ding a function count ple cences.	Scanni raphs - transiti on word able an	ng to lo Introduc on to th s; Word d uncou	ook for ing the ne next forms: intable;	CO:	1,CO3, CO5
2	2Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. Writing: Paragraph writing (specific topics) using suitable cohesive devices; Mechanics of writing - punctuation, capital letters. Grammar and Vocabulary: Cohesive devices - linkers, sign posts and transition signals; Use of articles and zero article; prepositionsCO1,C02, CO5													
3	Re int con rep Gr	ading erpre nprel hrasi amn	g: Reading sponension. ng what her and	ng a tex ecific Writ is read Vocab	xt in de conte ing: ; avoid ulary:	etail by xt clu Summa ling rea Verbs	/ makin ies; s arizing dundar - Tens	ng basi trategie - id ncies an es; Sub	c inferences to entifyind reper- pject-ve	ences - r use to ng ma titions. erb agree	ecogniz ext clu in idea ement; I	ing and es for /s and Direct	CO CO4	1,CO3, 4,CO5

And Indirect speech, Reporting verbs for academic purposes.	
Idiomatic expressions	
 Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Grammar and Vocabulary: Quantifying expressions - adjectives and adverbs; comparing and contrasting; Degrees of comparison; Use of antonyms Correction of sentences 	CO1,CO2, CO4,CO5
5 Reading: Reading for comprehension.	
Writing: Writing structured essays on specific topics using suitable claims and	
evidences	
Grammar and Vocabulary: Editing short texts – Identifying and correcting	CO1,CO3,
common errors in grammar and usage (Articles, Prepositions, Tenses, Subject-	005
Prefixes/suffixes	
Learning Resources	
Text Books	
1. Prabhavathy Y, M.Lalitha Sridevi, Ruth Z. Hauzel, "English all Round 1: Communi	cation skills
for Undergraduate students", Orient Black Swan, 2019	
Reference Books	
1. Bailey, Stephen. Academic writing: A handbook for international students. Routledg	ge, 2014.
2. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education 2. Henringe Martin Combridge Academic English (D2), CUD 2012	ational.
5. Hewings, Martin. Camoridge Academic English (B2). CUP, 2012	
Grammar/Listening/Writing:	
1-language.com: http://www.5minuteenglish.com/	
https://www.englishpractice.com/	
Grammar/Vocabulary:	
English Language Learning Online; http://www.bbc.co.uk/learningenglish/	
http://www.better-english.com/; http://www.nonstopenglish.com/	
https://www.vocabulary.com/; BBC Vocabulary Games	
Free Rice Vocabulary Game	
Keading: https://www.usingenglish.com/comprehension/: https://www.englishclub.com/reading/shc	rt_
stories htm: https://www.english-online.at/	11-
All Skills:	
https://www.englishclub.com/; http://www.world-english.org/	
https://www.englishclub.com/; http://www.world-english.org/ http://learnenglish.britishcouncil.org/	
https://www.englishclub.com/; http://www.world-english.org/ http://learnenglish.britishcouncil.org/ Online Dictionaries:	

TAL CHILLIS AND LINEAD AL CEDDA

Cours	Se .			CILL										
Code			20BS11	01	Year	ſ		Ι		Sem	ester	I		
Cours	se]	Basic S	cience	Brai	nch		EEE		Cou	rse Typ	e 1	Theory	
Categ	ory ta	,	2		T T	D		200		Duon				
Conti	15 1110116		5		L-1-	r		3-0-0		Prer	equisite	<u>s 1</u>	NII	
Interr	nuous nal		30		Sem	ester I	End	70		Tota		1	00	
Evalu	ation				Eval	uation	1			Mar	KS			
Cours	se Out	comes	5											
Upon successful completion of the course, the student will be able to														
CO1 Understand the basic concepts of calculus and linear algebra.(L2)														
CO2	App	ly the	echelor	1 IOrm	to obta	in the	solutio	n of sy	stem o	I linear	equation	s and ei	gen	
	Δnn	JIS 01 a lv the	concen	ts of c	alculus	to fin	d the se	eries ex	mansio	n and e	tremum	of a giv	ven funci	tion
CO3	.area	enclo	sed by	plane c	urves a	and vol	lume o	f the sc	olids. (1	L3)	xiremum	l ol a gl		lion
CO4	Ana	lyse th	e soluti	ion set	of line	ar syste	em of e	equatio	ns and	nature of	of the qu	adratic f	forms. (I	<i>A</i>)
COS	Ana	lyse th	e behav	viour o	f funct	ions us	ing me	ean val	ue theo	orems, ez	ktremum	of the g	given fur	nction
005	and	limits	of integ	ration.	(L4)									
CO6	App	ly the	concep	ts of ca	lculus	and lir	hear alg	gebra to	the gi	ven pro	blem and	<u>d submi</u>	t a repo	rt
Contr	ibutio	on of C	Course		mes to $h \to N$	wards	achiev	vement	of Pro	ogram (Jutcome	es &		
Stren	$\frac{gun oi}{DO1}$	DO2		(3:Hig)	n, 2: N		1, 1:L0			DO10	PO11	DO12	DSO1	DSO2
CO1	FUI	FU2	PU5	P04	FUS	PU0	r0/	PU0	P09	POIU	FUIT	PO12	2	1
CO_2	3								2	2			2	1
CO3	3								2	2			2	1
CO4	0	3							_	_			2	1
CO5		3											2	1
CO6	3								2	2			2	1
Syllab	ous												ł	
Unit						S	Vllabu	s					Ma	pped
No.		• •	•	<u>a 4</u>	6 17	~	. j 1100 0						C	O's
1	Mat Dopl	rices-l	Jinear	Systen	1 Of Eq	uatior	1S:	orm D	$\Lambda \cap for$	m colvi	na avata	m of	CO1,	CO2,
1	home	ogener	nauna u	non-h	omogei	neous l	linear e	equation	ng 101	111, SOLVI	ing syste	III OI	CO4,	CO6
	Eige	n valu	es and	Eigen	Vecto	ors:		Junio						
	Eige	n valu	es, Eige	en vecto	ors and	l their j	propert	ties, Ca	yley-H	lamilton	theorem	1	COL	cor
2	(with	nout pr	roof), fi	nding i	nverse	and po	ower o	f a mat	rix by (Cayley-	Hamilton	n	CO1,	CO_2 ,
	theor	rem, di	iagonal	ization	of a m	atrix, c	quadrat	tic forn	ns and	nature o	f the qua	adratic	04,	000
	form	s.												
2	Mea D all	n Valu	ie The	orems:	~ ~ ' ~ …		1		Canala				CO1,	CO3,
3	Kolle Tavl	ers Ind	eorem, 1 Maci	Lagran	ge's m	ean va	th rem	orem, v	Cauchy	y's meai	1 value ti	neorem,	CO5,	CO6
	Mult	tivaris	ble Ca	lculus		s w1		amuers	(with	<i>a</i> t p100	13).			
4	Func	tions of	of sever	al vari	ables. J	Jacobia	ın. Fun	ctional	depen	dence. r	naxima a	and	CO1,	CO3,
	mini	ma of	functio	ns of tv	vo vari	ables,	metho	d of La	grange	's multi	pliers.		CO5,	006
	Mult	tiple I	ntegral	s:		·								
5	Doul	ble inte	egrals, o	change	of ord	er of ir	ntegrati	ion, do	uble in	tegration	n in pola	r	CO1,	CO3,
	coor	dinates	s, Triple	e integi	als, ch	ange o	f varia	bles be	tween	Cartesia	n, cylind	drical	CO5,	CO6

	1
	and spherical polar co-ordinates, volume as triple integral.
	Application- Areas enclosed by plane curves.
Learn	ing Resources
Text E	Books
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006
Refere	ence Books
1.	N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications,
	2008.
e- Res	ources & other digital material
1.	https://nptel.ac.in/courses/111/108/111108157/

- <u>https://www.nptel.ac.in/courses/111/104/111104125/</u>
 <u>https://youtu.be/xDSejIvZmg4</u>
 <u>http://202.53.81.118/</u> -> PVPSIT FED-Moodle

]	ENGI	NEER	ING C	HEMI	STRY	7				
Cours	se		20BS	1102	Yea	r			Ι	Sem	ester]	
Code			D : 0	•	_			.			T		T 1	
Cours	se orv		Basic S	cience	Bra	nch		E	EE	Cou	rse Type	e	The	ory
Credi	<u>or y</u> ts		-	}	L-T	-P		3-	0-0	Prer	eanisite	s	N	il
Conti	nuor	IS	3	0	Sem	ester H	End	7	0 0	Tota	l		10	0
Intern	nal		_	-	Eva	luation	1		-	Mar	ks			-
Evalu	atio	1												
						C	ourse	Outcor	nes					
Upon	succ	essful	completi	on of th	ne cou	rse, the	stude	nt will l	be able	to				
CO1	Un	dersta	nd the l	basic p	rincip	les rela	ated to	renev	vable	energy	sources,	energy	system	ns, metal
finishing and materials (L2) CO2 Apply the knowledge of energy transformation principles to classify and describe the working of														
02	Apply the knowledge of energy transformation principles to classify and describe the working of electrodes and cells (L3)													
CO3	An	poply suitable methods for metal finishing and advanced techniques for the characterization of												
000	nar	no materials (L3)												
CO4	An	alyse the performance of different electrochemical techniques, energy conversion systems,												
	pol	ymers	and nan	o mater	rials in	their r	especti	ve app	licatio	ns (L4)				
CO5	Ma	ke an	effective	report	on var	rious co	oncepts	s and te	chnolo	gies rel	ated to E	Ingineer	ing cher	nistry.
	(Contri	bution of	of Cou	se Ou	tcome	s towa	rds ach	nievem	ient of l	Program	n Outco	mes &	
				Streng	gth of	correla	ations	(3:High)	$\frac{1, 2: M}{PO0}$	edium,	I:Low)	DO12	DCO1	DGOO
CO1	PU	I PO.	2 PO3	PO4	P05	PUo	PO/	PU8	P09	P010	POIT	POIZ	PS01	PS02
CO^{2}	3						1					1	1	
CO3	3						1					1	1	
CO4	3						1					1	1	
CO5	3						1			2		1	1	
							Syl	labus						
Unit N	lo.						Sylla	bus					Ν	lapped
1		ELE	CTROC	HEMIC	AL E	NERG	Y SYS	TEMS						003
		Intro	duction-	Origin	of ele	ctrode	potenti	ial, Ele	ctrode	Potenti	als, Mea	suremen	nt	
		of El	ectrode	Potenti	als, Ne	ernst E	quation	n for a	single	electrod	le, EMF	of a cel	1,	
		Type	s of E	Electrod	es or	Half	Cells	-Hydro	ogen a	and Ca	lomel a	electrod	e, CO	D1,CO2,
		Elect	rochemi	cal Ce	ll, Ga	lvanic	Cell	vs Ele	ctrolyt	ic Cell,	Electro	chemic	al CO)4,CO5
		conv	entions,	Types	OI 101 alactro	n Selec	ctive E	lectrod	es- gla trodes	ass mer	nbrane (electrod	e,	
		gas s	ensing e	lectrod	es (cla	ssificat	ion on	lv). Co	ncentra	ation Ce	lls.			
2		BAT	TERY T	ECHN	OLOC	GY		. <u>,</u> , eo.						
		Basic	c concep	ots, bat	tery cl	haracte	ristics,	classi	fication	n of ba	tteries, 1	mporta	nt	
		appli	cations	of ba	tteries,	, Class	sical 1	oatterie	s-dry/I	Leclancl	ne cell,	Mode	m CO	D1,CO2,
		batte	ries-zinc	air, lit	hium c	ells-Li	Mno2	cell- c	halleng	ges of ba	attery tec	chnolog	y. CO	D4,CO5
		Fuel	cells- In	ntroduc	tion -	classif	ication	of fue	l cells	- hydr	ogen an	d oxyge	en	
2		tuel o	cell, prop	$\frac{\text{bane an}}{\text{E SOL}}$	d oxyg	gen fue	I cell-	Merits (of fuel	cell.				
3		KEN Intro	EWABI	LE SUL	KCES	newabl	NEKU e ener	Т ТV						
		Sola	· energy	– Intr	oducti	on - P	hysical	5y and (Themic	cal nron	erties of	f Silico	1- C	1.02
		Prod	uction of	f Solar	Grade	Silicor	n from	Ouartz	- Dopi	ing of Si	ilicon- p	and n)4.CO5
	1							-	1	- Ŭ	1		1	,

	tune comi conductore. DV coll / color coll. Monufacturing of Distovoltoic									
	Calls using Chamical Vanor Deposition Technique applications of solar energy									
4	METAL EINISTING									
4	Technological importance of matel finishing methods of matel finishing									
	manufacturing of electronic components electrochemical techniques of	CO1 CO3								
	forming machining and etching electrolytic cell principle of electroplating	CO1, CO3,								
	nature of electrodeposits electroplating process. Electroplating of chromium	004,005								
	gold etc. Electroless plating of copper nickel									
5	POLYMERS & NANOMATERIALS									
5	Polymers: Introduction thermoplastic and thermo setting resins. Preparation									
	properties and uses of polystyrene and Polyphosphazines differences between									
	Nanomaterials: Introduction to nanomaterial: nanoparticles, nanocluster.									
	carbon nanotube (CNT) and nanowires. Chemical synthesis of nanomaterials:									
	sol-gel method. Characterization: Principle and applications of scanning	CO1,CO3,								
	electron microscope (SEM) and transmission electron microscope (TEM).	CO4 CO5								
	Learning Resources									
Text B	ooks									
1.	P.C. Jain and M. Jain, Engineering Chemistry, 15/e, DhanapatRai& Sons, Delhi (2014	-).								
2.	B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut.	·								
3.	O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009).									
Refere	nce Books									
1.	Sashichawla, A Textbook of Engineering Chemistry, DhanapathRai and sons, (2003)									
2.	B.S Murthy and P. Shankar, A Text Book of NanoScience and NanoTechnolog	çy,								
	University Press (2013).									
3.	S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010)									
4.	N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, M									
	murthyPublications (2014).									
5.	K. SeshaMaheshwaramma and Mridula Chugh, Engineering Chemistry, Pearso	n India Edn								
	services, (2016).									
e-Reso	ources & other digital material									
1 1	https://nptel.ac.in/courses/105105178/									

https://nptel.ac.in/courses/105105178/
 <u>http://202.53.81.118/course/view.php?id=82</u>

		PR	OBLEM	SOLV	VING	AND I	PROG	RAMN	AING	WITH	рутно	N			
Cours	se		20ES	1102	Yea	r			Ι	Sem	ester		Ι		
Code															
Course			Engine	ering Branch		EEE		Cou	rse Typ	e	Theory				
Category			Scie	nce				2	0.0						
Credi	ts		3		L-T-P			<u>3-0-0</u> Pr			equisite	s	N1		
Conti	nuo	us	3	J	Sem	Semester End			/0	Tota	ll Isa		10	0	
Fyolu	nai otio	n			Eva	iuatior	1			Mar	KS				
Unon	successful completion of the course, the student will be able to														
$\frac{\text{Opon}}{\text{CO1}}$	Understand the principles of structured programming and C constructs for solving problems. (I												ns (L2)		
$\frac{\text{CO1}}{\text{CO2}}$	Ar	Apply suitable control constructs and array concepts to solve problems. (1.3)												IS. (L2)	
CO3	Ar	oply the	concep	t of poi	nters	user de	efined of	lata tvr	es and	files to	solve pr	oblems	(L3)		
CO4	Ar	nalvze t	he giver	proble	m and	use m	odular	progra	mming	approa	ch to dev	velop so	lutions.	(IA)	
	(Contril	oution of	f Cours	se Out	tcomes	towar	ds ach	ievem	ent of P	rogram	Outcon	nes &	<u></u>	
			1	Strengt	th of c	orrela	tions (3:High	, 2: Me	edium, 1	:Low)				
	PO	1 PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3												2		
CO2	3												2		
CO3	3								3	3			2		
CO4		2											2		
							Syll	abus							
Unit I	No.						Syllab	us					Mappe	d CO's	
1	 Computational Finiking and visual Programming Concepts Introduction to computational thinking. Visual programming concepts. Scratch environment: sprites appearance and motion, angles and directions, repetition and variation, changing costumes, adding background, Input/output, variables and operators. Problems - draw geometrical shapes such as Circle, Triangle, Square and Pentagon, Make a sprite to ask the user to enter two different numbers and an arithmetic operator and then calculate and display the result, make a sprite to ask the user to enter a number to display even and odd 											CO1,	201, CO2		
2	Algorithms and Flowchart design through RaptorIntroduction to the idea of an algorithm, Pseudo code and Flowcharts.Flowchart symbols, Input/output, Assignment, operators, conditional if, repetition, procedure and sub charts.Problems - Finding maximum of 3 numbers, Unit converters, Interest calculators, and multiplication tables, GCD of 2 numbers, Fibonacci number generation, and prime number generation. Minimum, Maximum and average of n numbers.Introduction to Python												CO2		
3		Featur Const Opera Conve	tion, O ersion, C	ython, riables perator Condition	Writin and I s and onal st	ng and Identifi d Expi tateme	Exect iers, R ression nts and	iting Fi eserve ns, Op d iterat	rst Py d Wor eration ive sta	thon Production of the theory of the	ogram, l a Types, Strings,	Literal Input Type	CO1, CO3		
4		Func	tions an	d Strir	ngs in	Pytho	n						CO1,	CO3	

	Functions: Introduction, Built-in Math Functions, User Defined	
	Functions: Function Call, Variable Scope and Lifetime, The return	
	statement, Lambda Functions, Packages in python.	
	Strings: Introduction, Built-in String Functions, Slice Operation,	
	Comparing Strings, Iterating String, Regular Expressions.	
	Files and Data Structures in Python	
	File Handling: open, close, read and write operations.	
	Data Structures:	
~	Lists: Accessing values in lists, Nested Lists, Basic List Operations.	CO1,
5	Tuples: Creating Tuple, Accessing values in a tuple, Basic Tuple	CO3,CO4
	Operations.	,
	Dictionaries : Creating and Accessing Dictionaries, Built-in Dictionary	
	functions, List Vs Tuple Vs Dictionary.	
	Learning Resources	
Text Boo	oks	
1. A	n introduction to programming and algorithmic reasoning using raptor, Weingart	, Dr.Troy,
В	Brown, Dr. Wayne, 2018, CreateSpace (an Amazon.com Company)	
2. C	ore Python Programming, R. Nageswara Rao, 2018, Dreamtech press.	
Referenc	e Books	
1. P	ython Programming: Using Problem Solving Approach, Reema Thareja, 2017, O	xford
2. U	Iniversity Press.	
3. P	rogramming with python, T R Padmanabhan, 2017, Springer.	
4. P	ython for Data Analysis, Wes McKinney, 2012, O.Reilly.	
e- Resour	rces & other digital material	
1. ht	ttp://fusecontent.education.vic.gov.au/9f79537a-66fc-4070-a5ce-	
e	3aa315888a1/scratchreferenceguide14.pdf	
2. ht	ttps://raptor.martincarlisle.com/	
3. ht	ttp://www.ict.ru.ac.za/Resources/cspw/thinkcspv3/thinkcspv3.pdf	

					ENG	NEER	RING	GRAP	HICS						
Cours	se		20ES	1104	Year				Ι	Sem	ester		Ι		
Code															
Cours	se		Engine	ering	Branch			EEE Co			Course Type			Theory	
Categ	gory		Scie					~ .				-			
Credi	its		3	3 L-T-P				1-	0-4	Prer	equisite	S	Ni	1	
Conti	inuous		3()	Sem	Semester End			70		l		10	0	
Interi	nal				Evaluation					Mar	Marks				
Evalu	lation					C		Jutaan							
Unon	6110000	oful or	mnlati	on of t		rso the	ourse o	put will	les ba able	n to					
	Succes	struct		on or u	and or	rvos u	sod in	Enging	oring i	rootico	$(\mathbf{I},2)$				
$\frac{CO1}{CO2}$	Con	struct	orthogr	cuolis	and cu	ions of	f on ob	Eligine	bon ito	nositio	$\frac{(L3)}{1}$	nod with	rosport	to the	
02	refe	siluci (Janes	a pine	project			ject wi	lien its	positio		lieu wiu	respect	to the	
CO3	Dev	elon th	e isom	$\frac{(L3)}{\text{etric vi}}$	ew for	the give	ven or	hogran	hic pr	niection	and vic	e versa	$(\mathbf{I},3)$		
CO_4	Dev	elon th	e later	al curfa	ces of	solide	(13)	inograp	me pro	Jeenons					
CO5	Ider	tifv th	ie ann	ropriat	e com	mands	that	are us	ed to	prepare	the give	ven dra	wing in	CAD	
005	env	ironme	nt. (L3)	e com	manas	tilut	uie ub	<i>cu to</i>	propure	the gr	ven uru		CIL	
	C	ontribu	tion of	, f Cour	se Out	comes	towa	ds ach	ievem	ent of P	rogram	Outcon	nes &		
			(Streng	th of c	orrela	tions (3:High	, 2: Me	edium, 1	:Low)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2							2	2	2		1		
CO2	3	3							3	3	3		2		
CO3	2	2							2	2	2		2		
CO4	2	2							2	2	2		2		
CO5	2				2				2	2	2		3		
							Syll	abus							
Unit	t					(Svllahi	15					Manned CO's		
No.						L.	Jynaot	15					Mappe	u co s	
1		ntrod	uction	to E	ngine	ering	Grap	hics:	Princip	ples of	Engine	ering			
	(Jraphie	cs and	their	signi	ficance	e- Co	nventio	ons in	drawn	ng, lette	ering,			
	0	limens	ioning	, BIS C	Conven	tions.	n of	allinga	-	holo or	ad hype	wholo			
		a) Co	IIIC Se	cuons:		structio	DI OI	empse	e, para	idola al	la nype	erbola	C	1	
		b) Cv	r meuno reloida	l curv) es: Cv	cloid	Enicve	rloid ar	d Hyr	ocycloi	d			51	
		c) U	nvolut	es: Inv	olute i	of regi	ilar no	lvgons	and C	'ircle	u				
2	1	Project	tion o	f poir	nts. li	nes al	nd pl	anes:	Projec	tion of	points	in			
		lifferer	nt qua	drants.	lines	incli	ned to	one	and b	oth the	refere	nce			
	r	olanes,	findi	ng tru	ie len	gth a	nd in	clinati	on m	ade by	the li	ne.	C	52	
	Ī	Project	ions of	regula	ar plan	e surfa	aces.								
3		Project	tions o	of solid	ls: Pro	jection	ns of r	egular	solids	such as	cube, p	orism,			
	I	yrami	d, cyli	nder a	nd con	e (Tre	atmen	t limite	ed to s	olids in	clined t	o one			
	0	of the r	eferen	ce plan	les).								C	72	
		Section	is of s	olids:	Sectio	n plar	nes an	d secti	onal v	view of	right re	egular			
		olids-	cube,	prism	, cyli	nder,	pyram	id and	cone	. True	shape o	of the			
	S	ection	(Treat	atment	limite	ed to	the so	lids pe	erpend	icular t	o one o	of the			
4		orincip	al plan	es)			c				· •		~	22	
4		rthogi	raphic	Views	s: Syst	ems	01	proj	ection	s, co	nversion	n of	C	55	
	15	ometri	c view	io ort	lograp	onic Vi	ew. Is	ometri	c rroj	jections	: Princij	oles of			

	Isometric projection- Isometric scale; Isometric views: lines, planes and	
	solids. (Treatment is limited to simple objects only)	
5	Development of surfaces: Development of lateral surfaces of right	
	regular solids-prism, cylinder, pyramid, cone and their sectional parts.	CO4
	(Treatment limited to solids perpendicular to one of the principal planes)	001
	Introduction to CAD: Basic drawing, editing and dimensioning	
	commands: line, polyline, circle, arc, polygon, ellipse, rectangle, erase,	CO5
	undo, redo, snap, move, copy, rotate, scale, mirror, offset, layer, trim,	000
	extend, fillet, chamfer, array, linear and angular dimension.	
	Learning Resources	
fext B	ooks	
1.	N.D. Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.	
2.	K.L. Narayana&P.Kannaiah,EngineeringDrawing,3/e,ScitechPublishers,2012	
Refere	nce Books	
1	Dhanajay A Jolha Engineering Drawing Tata McGraw Hill 2000	
1. 2	Shah and Rana, Engineering Drawing, 7/e Pearson Education 2009.	
2. 3	K Venugonal EngineeringDrawingandGraphics 6/a New AgePublishers 2011	
З. Д	K C John Engineering Graphics 2/e PHI 2013	
т. 5	Basant Agarwal and C M Agarwal Engineering Drawing TataMcGrawHill 2	008
- Res	Durces & other digital material	
1	http://www.youtube.com/watch?v=XCWIXrkWco_Accessed on 01-06-2017	
1.		
	http://www.me.umn.edu/courses/me2011/handouts/drawing/blanco-	
2.		
2.	tutorial.html#isodrawing, Accessed on 01-06-2017.	
2. 3.	tutorial.html#isodrawing, Accessed on 01-06-2017. http://www.slideshare.net, Accessed on 01-06-2017.	

				CON	AMUN	VICAT	IVE I	ENGLI	SHII	LAB					
	ourse Code		20HS	1151		Year			I	5	Semester				
Course Category		7	Huma	nities	Branch		EEE		Co	Course Type			Lab		
Credits			1.	5	L-T-P		0-	0-0-3		erequisi	Ni	1			
Continuous Internal Evaluation		ıs n	1:	5	Semester End Evaluation			35		Total Marks			I		
Course Outcomes															
Upon	Upon successful completion of the course, the student will be able to														
CO1	Aco	quire c	ommur	nicatior	n skills	throug	gh vari	ous lan	guage	learning	activitie	es (L3)			
CO2	Cor	nstruct	meani	ngful se	entence	es and	Paragr	aphs(L	3)						
CO3	An	alyze t	he text	to deve	elop co	mpreh	ensive	ability	(L4)						
CO4	Pre	paratic	on of re	port ba	sed on	the ac	tivity	(L4)							
	Co	ntribu	ition of	f Cour	se Out	comes	towar	ds ach	ievem	ent of P	rogram	Outcon	nes &		
	DO1	DOD		Streng	th of c	orrela	tions ($\frac{3:High}{DO9}$, 2: Me	$\frac{1}{10000000000000000000000000000000000$:Low)	DO12	DCO1	DCOD	
CO1	POI	PO2	P03	P04	P05	P06	P07	PU8	209	2	POIT	2	1	PS02	
CO1									3	3		3	1		
CO_2										3		3	1		
C03									3	3		5	1		
0.04							Svll	abus	5	5			1		
Expt. No.						S	Syllabu	IS					Maj	Mapped CO's	
1	Ide	ntifyir	ng the t	opic, tl	ne cont	text an	d spec	ific pie	ces of	informa	tion by 1	istening			
	to	short a	udio te	xts and	answe	ering a	series	of ques	tions.		•	U	CO		
2	As	king a	ind ans	wering	g gene	ral que	estions	on fa	miliar	topics	such as	home,		I,CO4	
	fan	nily, w	vork, st	udies a	nd int	erests;	introd	ucing o	neself	and oth	ers.				
3	An	swerin	ng a se	ries of	quest	ions a	bout n	nain id	ea and	l suppor	ting ide	as after			
	list	ening	to audi	o texts.									_ CO1	,CO2,	
4		scussic	on in pa	urs/ sm	all gro	ups on	specif	ne topie	es tollo	owed by	short sti	ructured		04	
5		KS.	for al	halas	mnrah	naiar	and are	mmari	ina mi	ant in lin	tonad to				
5		ound		$\frac{1}{1}$		n noir		moll a	round	and re-	norting	what is	CO1	,CO3,	
0		CUSSII	ig spec		pics 1	n pair	S OF S	sman g	roups	and re	porting	what IS		204	
7	M	king	nredict	ions w	hile 1	istenin	g to a	Convers	ations	/transact	ional di	alogues	1		
	wit	hout v	rideo: li	stening	with	video	5 10 1		au 0113/	aunsaet	ionai u	unogues			
8	R	ole pla	vs for r	oractice	e of con	nversat	ional I	English	in aca	demic c	ontexts		CO	I,CO4	
Ŭ	(fo	rmal a	nd info	rmal) -	asking	g for ar	nd givi	ng info	rmatio	n/directi	ons.				
9	Ide	ntifyir	ng kev	terms	, und	erstand	ling co	oncepts	and	answeri	ng a se	eries of			
	rel	evant c	juestion	ns that	test co	mprehe	ension				C		CO	I,CO4	
10	Fo	rmal o	ral pres	sentatio	ons on	topics	from a	academ	ic cont	exts -w	ithout th	e use of			
	PP	T slide	es.												
Text Books

1. Prabhavathy Y, M.Lalitha Sridevi, Ruth Z. Hauzel, "English all Round 1: Communication skills for Undergraduate students", Orient Black Swan, 2019

Reference Books

- 1. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 2. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 3. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012

e- Resources & other digital material

Grammar/Listening/Writing:

1-language.com

http://www.5minuteenglish.com/ https://www.englishpractice.com/

Listening:

https://learningenglish.voanews.com/z/3613;

http://www.englishmedialab.com/listening.html

Speaking:

https://www.talkenglish.com/BBC; Learning English - Pronunciation tips Merriam-

Webster – Perfect pronunciation Exercises

All Skills: https://www.englishclub.com/;

http://www.world-english.org/

http://learnenglish.britishcouncil.org/

Online Dictionaries:

Cambridge dictionary online; MacMillan dictionary; Oxford learner's dictionaries

				EN	GINE	ERIN	G CHI	EMIST	RY L	AB				
Cours	se		20BS	1151	Year	ſ			Ι	Sem	ester		Ι	
Code														
Cours	se		Basic S	cience	Brai	ıch		E	EE	Cou	rse Typ	e	La	b
Categ	ory		1	-	TT	D		0	0.0		•••			1
Credi	ts		<u> </u>	5	L-I-	<u>·P</u>	Z-n al	0-	0-3	Prer Tete	equisite	S	<u>N1</u>	1
Intor	nuous aal		1.)	Sem Evol	untion			55	10ta Mor	ll Ize		50	
Evalu	ation				Eval	uauon				Wiai	N3			
Liture	ution					Co	ourse (Dutcon	ies					
Upon	pon successful completion of the course, the student will be able to													
CO1	Dei	nonst	rate the	workin	g of in	strume	ents su	ch as pl	H mete	er and C	onduct n	neter.(L3	3)	
CO2	Ap	oly th	e acqui	red kno	wledg	e to de	termin	e the qu	uantity	of met	al ions i	n a give	n solutio	on(L3)
CO3	Est	imate	the amo	ount of	active	chlorir	ne in b	leachin	g powo	der.(L4)		0		
CO4	Coi	npare	the vise	cosities	and su	urface t	tensior	of diff	erent l	iquids(I	.4)			
CO5	A	nalyze	differe	nt com	pound	s and e	examir	e the p	reparat	tion of d	lifferent	polymer	rs (L4)	
CO6	Ma	ke an	effectiv	e repor	t based	l on ex	perime	ents						
	Co	ntrib	ution of	f Cours	se Out	comes	towar	ds ach	ievem	ent of P	rogram	Outcon	1es &	
				Strengt	<u>th of c</u>	orrela	tions (3:High	, 2: Me	edium, 1	:Low)			
001	<u>PO1</u>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	3		1				3							
CO_2	2		1				3						1	
CO_4	3		1				3						1	
C07	3		1				3						1	
CO6	3		1				3			3			1	
			-	11			Syll	abus			1			
Expt. 1	No.						Syllab	us					Mappe	d CO's
1		Deter	minatio	n of stre	ength o	of an a	cid by	pH met	tric me	thod			CO1 (°06
2		Deter	minatio	n of cor	nducta	nce by	condu	cto me	tric me	thod			001,0	.00
3		Deter	minatio	n of vis	cosity	of a lic	quid	• 1					0040	
4		Deter	minatio	n of sur	face te	ension	$\frac{\text{of a lic}}{\frac{1}{2}}$	luid	1 1				CO4,C	206
5		Deter	minatio	$\frac{101 \text{ cm}}{2000 \text{ cm}}$	omun	$\frac{n(vI)}{2DTA}$	III pola mothor	issium (1	alchro	mate			CO2,C	CO6
7		Fstim	ation of	active	chlori	$\frac{DTA}{D}$	ent in	ı Bleach	ing no	wder			CO3 (<u>`06</u>
8		Prena	ration of	f Phenc	ol-Forr	naldeh	vde reg	sin	ing po	waei				
9		Prepa	ration o	f Urea-	Forma	ldehvd	le resir	1					CO5,C	206
10		Thin l	ayer ch	romato	graphy	(paper	chron	natogra	phy)					
						Lea	rning	Resou	rces			•		
Text I	Books													
1.	N.KI	Bhasir	and S	udha I	Rani I	Laborat	ory N	Ianual	on En	igineerir	ng Chen	nistry 3/	e, Dhar	ipatRai
D.C	Publ	shing	Compa	ny (200	J/).									
Kefere 1	ence B	00KS	I Dar	nov D	<u> </u>	mac T		0.000000	Mar	d Since	only D	Vecal	a Oner	titativa
1.	Cher	nical	J, Den Analysie	$\frac{1}{6} \frac{1}{6} \frac{1}{2}$	C, Da	nublis	D, 111 hers (7	0000	IVI all	u Sivas	ankar D	voger	s Quan	litative
e- Res	Sources		her digi	tal mate	erial	Puolis	1013 (2							
1.	https	://npte	el.ac.in/	courses	/10510)5178/								
2.	http:/	//202.	53.81.1	<u>18/cour</u>	se/viev	w.php?	<u>id=82</u>							

	PROBLEM SOLVING AND PROGRAMMING WITH PYTHON LAB													
Cours	se		20ES	1152	Yea	r			Ι	Sem	ester		Ι	
Code			. .	•							T		T	1
Cours	se		Engin	eering	Bra	nch		E	EE	Cou	rse Typ	e	La	b
Credi	gory ite			snce	I_T	D		0	0.3	Dror	oquisito	NG	Ni	1
Conti	innoi	15	1. 1	<u>5</u> 5	Sem	- <u>1</u> ester F	End	-0-	0- <u>5</u> 35		d	.5	5()
Inter	nal	40	1	5	Eva	luatior) 1).)	Mar	ks		50	,
Evalu	atio	n												
						С	ourse	Outcon	nes	·		·		
Upon	succ	essful	ssful completion of the course, the student will be able to											
CO1	Ap	oply visual programming concepts, flowchart design techniques and Python programming												
	con	onstructs for solving problems. (L3)												
CO2	Co	onduct experiments as an individual, or team member by using Scratch/Raptor tools and Python												
CO3	pro	ogramn	iing. (L.) ive ron	ort bas	ed on r	various	nrogra	maim	nlamon	ed (12)			
C03	Ar	nlv te	chnical	know	ledge	for a	give	n nrol	olem	and ev	Dress W	vith an	effectiv	ve oral
		mmuni	cation. (L3)	icage	101 0	. 5100	- PIO			L1000 M	an an	encen	
CO5	An	alyze o	outputs g	generate	ed thro	ugh Sc	ratch/I	Raptor	tools a	nd Pyth	on progr	amming	g. (L4)	
	. (Contril	oution o	of Cour	se Ou	tcomes	s towa	rds ach	ievem	ent of F	rogram	Outco	mes &	
				Streng	th of c	correla	tions ((3:High	, 2: Me	edium, 1	:Low)			
	PO	1 PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3								_			2	2	2
CO2		_			3				3				2	2
<u>CO3</u>	2									3				
CO4	3	2								3				
05		3					Syll	abuc						
Unit I	No						Svllabi						Manne	d CO's
1	10.					~	<u>.</u>	~					CO1.	CO2.
		Apply	Visual	Program	nming	Conce	epts usi	ng Scra	atch too	ol.			CO3,C0	O4,CO5
2		Solve	various	compu	tationa	l probl	ems by	y desig	ning fl	owchart	s using l	Raptor	CO1,	CO2,
		tool.											CO3,C0	D4,CO5
3		Pytho	ı progra	ms on i	isage (of oper	ators.						CO1,	CO2,
													<u>CO3,C0</u>	<u>04,CO5</u>
4		Pythor	n Progra	ms to d	lemons	strate d	ecisior	n makin	g and	branchi	ng (Seleo	ction)	CO1,	$CO_{2},$
5													$\frac{CO3,CC}{CO1}$	$\frac{54,005}{002}$
5		Pythor	n progra	ms to d	emons	trate it	erative	statem	ents.				CO3.CO	CO2, D4.CO5
6		D (1		. 1									CO1,	$\overline{CO2}$,
		Pytho	n progra	ms to d	lemons	strate fi	unction	IS					CO3,C0	O4,CO5
7		Pythor	n progra	ms to p	perform	n oper	ations	on strii	ngs, reg	gular ex	pression	s with	CO1,	CO2,
		built – in functions. CO3,CO4,CO5												
8		Pythor	1 progra	ms to h	andle	file one	eration	s.					C01,	CO2,
		<u></u>	1					-					<u>CO3,C0</u>	<u>J4,CO5</u>
9		Pythor	1 progra	ms to a	pply v	arious	data st	ructure	s.				CO1,	CU2,
10			-		-								CO3, CO1	$\frac{54,005}{CO2}$
10		Installing, importing and accessing numpy and pandas packages.												
														57,005

Text Books

- 1. An introduction to programming and algorithmic reasoning using raptor, Weingart,
- 2. Dr. Troy, Brown, Dr. Wayne, 2018, CreateSpace (an Amazon.com Company)
- 3. Core Python Programming, R. Nageswara Rao, 2018, Dreamtech press.

Reference Books

- 1. Python Programming: Using Problem Solving Approach, Reema Thareja, 2017, Oxford University Press.
- 2. Programming with python, T R Padmanabhan, 2017, Springer.
- 3. Python for Data Analysis, Wes McKinney, 2012, O.Reilly.

- 1. <u>http://fusecontent.education.vic.gov.au/9f79537a-66fc-4070-a5ce-e3aa315888a1/scratchreferenceguide14.pdf</u>
- 2. <u>https://raptor.martincarlisle.com/</u>
- 3. <u>http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf</u>

				LIF	E SCI	IENCE	ES FO	R ENG	INEE	RS				
Cours	se		20MC	1101	Year	r			Ι	Sem	ester		Ι	
Code														
Cours	se		Mand	atory	Brai	nch		E	EE	Cou	rse Typ	e	Theo	ory
Categ	gory													
Credi	its		0	-	L-T-	·P		2-	0-2	Prer	equisite	S	Ni	1
Conti	nuou	15	30)	Sem	ester I	End	,	70	Tota	l -		100)
Inter					Eva	luation	1			Mar	ks			
Evalu	atio	n				C)+	• • •					
Unon	61100	acceful c	omplati	on of t		rea tha	ourse (Juicon	he oble	to				
	pon successful completion of the course, the student will be able to O1 Apply the concepts of biology to create tangible and economically viable engineering													
COI		ods ((I		epis	51 010	logy t		lie taii	gible		monnea	liy viau	ie engi	leering
CO2		alvse r	ew tecł	nologi	es in (Genetic	s biote	chnol	nov nh	armace	utical n	nedical a	nd agric	ultural
002	fie	lds from	the kn	owledge	e gain	ed fror	n DNA	techn	ology.	L4)	uticul, li	ieuieui t	ind ugite	Juiturui
CO3	Ap	ply the	knowle	dge of	biolog	y to in	prove	the liv	ing sta	ndards o	of societi	es.(L3)		
CO4	Ap	ply th	e basic	knowl	edge	of gen	etics a	and D	NA te	chnolog	y for d	isease d	liagnosti	cs and
	the	rapy.(L	.3)		U	U				C	-		C	
CO5	An	alyse	new tec	hnolog	ies in	biotec	hnolog	gy, pha	armace	utical, 1	nedical	and agr	icultural	fields
	fro	m the k	nowled	ge gain	ed from	m DNA	A techn	ology.	(L4)					
	0	Contrib	ution of	f Cour	se Out	comes	towar	ds ach	ievem	ent of P	rogram	Outcon	nes &	
				Streng	th of c	orrela	tions (3:High	, 2: Me	dium, 1	:Low)	[
GO 1	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	3									2				
CO2					3					2				
<u>CO3</u>					3	2				2				
$\frac{C04}{C05}$	2				3	3				2				
COS	3					3	Syll	abuc		Z				
Unit N	No						Svllahi	15					Mannee	$\frac{1}{1}$
1	10.	Introd	uction	to Biol	ngv		Synabl	10						$\frac{1003}{11}$
1		Compa	rison o	f Biolo	gical o	organis	ms wi	th mar	made	systems	:Eve ar	nd	00	<i>,</i>
		Camer	a ,Flyin	g bird a	and Ai	rcraft U	Jltra st	ructure	of cell	l: Proka	ryotes ar	nd		
		Eukary	votes	0										
2		Bio-m	olecules	5									CC	D1
		Structu	ire and	functio	ns of p	orotein	s (antil	oodies)	Struct	ure and	function	ns	CC)2
		of nuc	eic acid	s Indus	strial a	pplicat	ions- E	lnzyme	s and I	Ferment	ation			
3		Bioene	ergetics	and C	ellular	Respi	ration							
		Mecha	nism of	photos	ynthes	518							CC)3
		Glycol	ysis volo											
		ICA C	ycie n transr	ort ch	ain and	Ovida	tiva ni	Josnha	rulation	n				
Δ	\rightarrow	Genet	n ualis		un and		urve pi	1050110	i y iatiOl	1.				
Ŧ		Mende	l'slaws										CC)3
		Gene r	napping										C)4
		Single	gene di	isorder	s in hu	mans								
5		Recon	binant	DNA '	Fechn	ology								
		Recom	binant v	vaccine	s, tran	sgenic	microt	bes, pla	nts and	animal	ls. Anim	al	CC	02
		cloning	g, bioser	nsors, b	oiochip	s.							CC)5

Expt.	Name of the experiment	Mapped CO's
No.		
1	Dissect & mount different parts of plants using Microscope	CO1
2	Estimation of Proteins by using Biuret method	CO2
3	Estimation of enzyme activity.	CO2
4	Estimation of chlorophyll content in some selected plants.	CO3
5	Nitrogen Cycle: Estimation of Nitrates /Nitrites in soil by using	CO3
	Spectrophotometer	
6	Mendal's laws and gene mapping	CO4, CO5
	Learning Resources	
Text Bool	ζδ	

1. Biology for Engineers-Wiley Editorial

2. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.

3. Biotechnology by U.Satyanarayana, Alliedand books Pvt. ltd. Kolkata

Reference Books

1. Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.

2. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012

I B.TECH II SEMESTER SYLLABUS

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20HS1201	Communicative English II	3	3	0	0	30	70	100
20BS1201	Differential Equations and Vector Calculus	3	3	0	0	30	70	100
20BS1203	Engineering Physics	3	3	0	0	30	70	100
20ES1201	Basic Electrical & Electronics Engineering	3	3	0	0	30	70	100
20HS1251	Communicative English II Lab	1.5	0	0	3	15	35	50
20BS1252	Engineering Physics Lab	1.5	0	0	3	15	35	50
20ES1251	Basic Electrical & Electronics Engineering Lab	1.5	0	0	3	15	35	50
20ES1252	Basic Workshop	3	1	0	4	15	35	50
20MC1241A /20MC1241B	NSS / NCC	0	0	0	2	Complet	ed / Not comple	ted
Total		19.5	13	0	15	180	420	600

I B.Tech., II Semester

L – Lecture T – Tutorial P – Practical

r				C	OMM	UNICA	ATIVE	E ENG	LISH	II				
C	Course Code		20HS	1201		Year			Ι	S	Semeste	r	II	
Ca Ca	Course ategory	7	Huma	nities]	Branch	ı	E	EE	Co	ourse Ty	pe	Theo	ory
C	redits		3			L-T-P)	3-	0-0	Pr	erequisi	tes	Ni	1
Cor In Eve	ntinuon Iternal	1S	30)	Sen Ev	nester I valuati	End on		70		Total Marks		10	0
LVč	aiuatio	11				C	nurse (Jutcon	165					
Upon	succes	sful c	ompleti	on of t	he cou	rse the	studer	nt will	he able	e to				
CO1	Und	Understand various Linguistic aspects (L2)												
CO2	Apply language to draft letters for various business purposes(L3)													
CO3	Interpret the text for information processing and effective communication. (L3)													
CO4	Ana	vze tł	ne data f	or repo	ort writ	ing and	d préci	s writir	1g. (L4	.)		(-)		
CO5	Rela	te adv	anced v	vriting	skills f	for bett	er emp	loyabi	lity. (L	4)				
-	Co	ntrib	ution of	f Cour	se Out	comes	towar	ds ach	ievem	ent of P	rogram	Outcon	1es &	
				Streng	th of c	orrela	tions (3:High	, 2: Me	edium, 1	:Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													1	
CO2									3	3		3	1	
CO3									3	3		3	1	
CO4			_						3	3		3	1	
CO5									3	3		3	1	
							Syll	abus						
Unit						S	Syllabu	S					Ma	pped
NO.	D	1	D 1'	6		•			1 /	•1	1	.1 .	C	U's
1	Kea	aing:	Readin	g Ior j	present	ing - s	strategi	es to s	select,	compile	and sy	nthesize		
	reco	anize	academ	ic styl		Joinpre	menum	ig a wi	ue ran	ige of te	als -Rea	ading to		
	Rea	ding	for Wr	iting.	c Paranł	nrasino	- usir	יטווט	tations	and in	-text_ref	erences.	CO1	, CO3,
	usin	g aca	demic s	tvle - a	voidin	g colle	nuial v	words a	and nh	rases - V	Vriting a	an essav	0	205
	after	r resea	arching	a topic	- Citir	ig the s	ources	used	and ph	rubeb (, ming (in ossay		
	Gra	mma	r and	Vocab	ulary:	Acade	emic v	verbs i	n cont	ext: for	mal wo	rds and		
	phra	ises-A	warene	ss aboi	it Root	words				,				
2	Rea	ding:	Recog	nizing	formal	and i	nforma	al style	s -Rec	ognizin	g the di	fference		
	betw	veen f	acts and	opinio	ons - Io	lentify	ing and	l under	standiı	ng differ	ent pers	pectives		
	Wri	ting:	Letter v	vriting	and e	mail w	riting -	Struct	ure, Co	onventio	ns and E	Etiquette	~ ~ .	~ ~ ~
	- In	forma	il, semi	-forma	l and	formal	(enqu	iry, co	mplair	nts, seek	ing peri	mission,	COI	,CO2,
	seek	ing in	ternship) - Ke-(draft a	piece of	of text	from a	differe	ent persp	ective -	Writing	CO4	, CO5
	Crommon and Vacabulary: A grammatic Subject work. Noun pronount: Editing													
	Gra	t tovt	\mathbf{I} and \mathbf{V}	ocabl	nary:	Agreel	enositi	Subject	l-verd,	noun-p	aonoun;	Euting		
3	Reg	ding.	Ident	ifving	o - r III clain	asar pr	<u>vidence</u>	$rac{1}{2}$	awe/on	inione	nurnos	e and		
	stan	ce/no	sition -1	Unders	tand fl	ne corr	elation	betwa	een a	talk and	a read	ing text		
	base	ed on i	inference	es mac	le.		Junior		con u	un un	10.00	ing text	CC)1,
	Wri	ting:	Writin	g struc	ctured	analvti	ical ar	nd argu	imenta	tive ess	says on	general	CO3	, CO5
	topi	cs usi	ng suita	ble cla	ims ar	nd evid	ences	with th	e sour	ces cited	l-Peer re	view of		
		topics using suitable claims and evidences with the sources cited-Peer review of												

	the essays written	
	Grammar and Vocabulary: Language for different functions such as stating a	
	point, expressing opinion, Agreeing/disagreeing, Adding information to what	
	someone has stated, and asking for clarification - Modifiers and misplaced	
4	Booding: Deading varied text types. Structure and contents of a formal report.	
4	Reading: Reading varied text types - Structure and contents of a formal report -	
	of references	
	Writing: Writing reports	CO1, CO3
	Grammar and Vocabulary: Active and passive voice - Use of passive verbs in	CO4, CO5
	academic writing. Precis writing	
5	Reading: Reading for inferential comprehension	
5	Writing: Writing one's CV and cover letter - Applying for a job/internship	
	Grammar and Vocabulary: Reinforcing learning - Edit one's writing to correct	CO1 CO2
	common errors in grammar and usage - Use appropriate vocabulary for speaking	CO5
	and writing – Various purposes. Jumbled sentences	000
	Learning Resources	
Text I	Books	
1.	Prabhavathy Y. M.Lalitha Sridevi "English all Round2: Communication skills for U	Undergraduate
	students", Orient Black Swan, 2020	
Refere	ence Books	
Refere 1.	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled	ge, 2014.
<u>Refere</u> 1. 2.	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education	ge, 2014. nal.
Refer 1. 2. 3.	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B	ge, 2014. nal. sook, Teacher
Refer 1. 2. 3.	 ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routledge Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) 	ge, 2014. nal. ook, Teacher
Refer 1. 2. 3. e- Res	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material	ge, 2014. nal. Sook, Teacher
Refer 1. 2. 3. e- Res Gram	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mmar/Listening/Writing:	ge, 2014. nal. Book, Teacher
Refer 1. 2. 3. e- Res Gram 1-lang	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled, Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/	ge, 2014. nal. Book, Teacher
Refer 1. 2. 3. e- Res Gram 1-lang Gram	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary:	ge, 2014. nal. Book, Teacher
Refer 1. 2. 3. e- Res Gram 1-lang Gram Englis	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary: sh Language Learning Online; http://www.bbc.co.uk/learningenglish/	ge, 2014. nal. Book, Teacher .com/
Refer 1. 2. 3. e- Res Gram 1-lang Gram Englis http://	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled, Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ http://www.fminuteenglish.com/ http://www.bbc.co.uk/learningenglish/ /www.better-english.com/; http://www.nonstopenglish.com/	ge, 2014. nal. Book, Teacher
Refer 1. 2. 3. e-Res Gram 1-lang Gram Englis http://	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routledg Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary: sh Language Learning Online; http://www.bbc.co.uk/learningenglish/ //www.better-english.com/; http://www.nonstopenglish.com/ //www.vocabulary.com/; BBC Vocabulary Games	ge, 2014. nal. Book, Teacher
Refero 1. 2. 3. e- Res Gram 1-lang Gram Englis http:// https:/	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled, Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ http://www.fminuteenglish.com/ http://www.betcr-english.com/; http://www.nonstopenglish.com/ //www.vocabulary.com/; BBC Vocabulary Game	ge, 2014. nal. ook, Teacher
Refer 1. 2. 3. e- Res Gram 1-lang Gram Englis http:// Free F Readi	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routledg Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary: sh Language Learning Online; http://www.bbc.co.uk/learningenglish/ //www.better-english.com/; http://www.nonstopenglish.com/ //www.vocabulary.com/; BBC Vocabulary Games Rice Vocabulary Game ing:	ge, 2014. nal. Book, Teacher
Refer 1. 2. 3. e-Res Gram 1-lang Gram Englis http:// https:/ Free F Readi https:/	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routledg Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary: sh Language Learning Online; http://www.bbc.co.uk/learningenglish/ //www.better-english.com/; http://www.nonstopenglish.com/ //www.vocabulary.com/; BBC Vocabulary Games Rice Vocabulary Game ing: //www.usingenglish.com/comprehension/; https://www.englishclub.com/reading/show	ge, 2014. nal. ook, Teacher .com/ .com/
Refero 1. 2. 3. e-Res Gram 1-lang Gram Englis https:// https:// https:// https://	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routledg Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary: sh Language Learning Online; http://www.bbc.co.uk/learningenglish/ //www.better-english.com/; http://www.nonstopenglish.com/ //www.vocabulary.com/; BBC Vocabulary Games Rice Vocabulary Game ing: //www.usingenglish.com/comprehension/; https://www.englishclub.com/reading/shor //www.english-online.at/	ge, 2014. hal. book, Teacher .com/
Refero 1. 2. 3. e-Res Gran 1-lang Gran Englis http:// https:/ Free F Readi https:/ All SH	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routledg Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary: sh Language Learning Online; http://www.bbc.co.uk/learningenglish/ //www.better-english.com/; http://www.nonstopenglish.com/ //www.vocabulary.com/; BBC Vocabulary Games Rice Vocabulary Game ing: //www.usingenglish.com/comprehension/; https://www.englishclub.com/reading/shor //www.english-online.at/ kills:	ge, 2014. nal. Book, Teacher .com/
Refer 1. 2. 3. e-Res Gram 1-lang Gram 1-lang Gram Englis http:// https:/ Free F Readi https:/ All SH https:/	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routledg Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary: sh Language Learning Online; http://www.bbc.co.uk/learningenglish/ //www.better-english.com/; http://www.nonstopenglish.com/ //www.vocabulary.com/; BBC Vocabulary Games Rice Vocabulary Game ing: //www.english.com/comprehension/; https://www.englishclub.com/reading/show //www.english-online.at/ kills: //www.englishclub.com/; http://www.world-english.org/ http://learnenglish.britishc	ge, 2014. nal. ook, Teacher .com/ .com/
Refero 1. 2. 3. e- Res Gram 1-lang Gram Englis https:// https:// https:/ All Sh https:// Onlin	ence Books Bailey, Stephen. Academic writing: A handbook for international students. Routled, Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student B Resource Book, CD & DVD) sources & other digital material mar/Listening/Writing: guage.com; http://www.5minuteenglish.com/ https://www.englishpractice. mar/Vocabulary: sh Language Learning Online; http://www.bbc.co.uk/learningenglish/ /www.better-english.com/; http://www.nonstopenglish.com/ //www.vocabulary.com/; BBC Vocabulary Games Rice Vocabulary Game ing: //www.english.com/comprehension/; https://www.englishclub.com/reading/shor //www.english-online.at/ kills: //www.englishclub.com/; http://www.world-english.org/ http://learnenglish.britishc he Dictionaries:	ge, 2014. nal. Book, Teacher .com/ .com/

		D	IFFERI	ENTIA	LEO	UATIO	ONS A	ND VI	ЕСТО	R CAL	CULUS			
Cours	se		20BS	1201	Year	r			I	Sem	ester		II	
Code	20		Basic S	cience	Brai	nch		F	FF	Соц	rse Tvn	_	Theo)rv
Categ	gory		Dusic 5	cicilee	Diai	icii			LL	Cou	ise i yp		Theo	лу
Credi	ts		3	-	L-T-	·P		3-	0-0	Prer	equisite	s	Ni	1
Conti	nuoi	15	30)	Sem Evol	ester l	End	7	70	Tota	d ka		100)
Evalu	atio	n			Lva	uation	L			wiar	KS			
		- 1			1	Co	ourse (Jutcon	ies					
Upon	succ	essful o	completi	on of t	he cou	rse, the	studer	nt will	be able	to				
CO1	Un	derstar	nd the ba	sic con	cepts o	of diffe	erential	equati	ons and	d vector	calculus	s (L2).		
CO2	Ap	ply different methods to solve differential equations (L3).												
CO3	Ap (L3	ply the 3).	e differe	ntial o	perator	r to ca	lculate	the di	vergen	ice and	flux of	vector	point fu	nctions
CO4	An	alyse t	he given	differe	ential e	quatio	n to fin	d the s	olution	(L4).				
CO5	Ca	lculate	work do	one and	flux b	y apply	ying ve	ctor in	tegral t	heorem	s (L4).			
CO6	Ap	ply the	concept	ts of di	fferent	ial equ	ations	and ve	ctor ca	lculus to	o the giv	en prob	olem and	submit
	<u> a l</u>	Contrib	ution of	f Cour	se Out	comes	towar	ds ach	ieveme	ent of P	rogram	Outcor	mes &	
			, ,	Streng	th of c	orrela	tions (3:High	, 2: Me	dium, 1	:Low)			
	PO	1 PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													2	1
CO2	3								2	2			2	1
CO3	3	2							2	2			2	1
C04		3											$\frac{2}{2}$	1
CO5	3								2	2			$\frac{2}{2}$	1
000							Syll	abus	_				1 -	-
Unit N	No.						Syllabı	15					Mappe	d CO's
1		Ordin	ary Dif	ferenti	al Equ	ations	Of Fi	rst ord	er and	First d	egree:			
		Exact	differen	ntial e	quation	ns, Eq	luation	s redu	cible	to exa	ct equat	tions,	CO1,C	02,
		orthog	onal traj	ectorie	s in Ca	rtesiar	and p	olar co	ordinat	es.	th and d		CO4,C	D6
2		Linea	r Differ	rential	<u>Equat</u>	tions of	oning, of Hig	her O	rder• (<u>ar grow</u> Operato	r D rul	ecay.		
2		finding	g comple	ementa	ry func	ction, in	nverse	operato	or, rule	s for fin	ding par	ticular	C01,C0	D2,
		integra	al, metho	od of va	riatior	n of par	rameter	rs.			U I		CO4,C0	J6
3		Partia	l Differ	ential	Equat	ions: I	Format	ion of	partial	differen	ntial equ	ations,	CO1.C	<u>.</u>
		Linear equations of first order, Non-Linear equations of first order, Charpit's CO4,CO6												
4		Vector Differentiation: Scalar and vector point functions, vector operator												
-		del, de	applies	s to sca	lar poi	nt fund	ctions-	Gradie	nt, del	applied	to vecto	r point	CO1,CO	03, 06
		functio	ons- Div	ergence	e and C	Curl.							005,00	
5		Vecto	r Integ	ration:	Line	integ	ral, su	rface	integra	l, volu	me integ	gral,		
		Green	s theore	em in t	ne plai	ne, Sto	оке's th	neorem	, Divei	gence t	neorem	(All	CO1,C	D3,
		Annli	nis with cations	work d	or). Ione fl	11X							CO5,C	D6
l		· · phu	Applications : work done, flux. CO3,CO6											

Text Books

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

Reference Books

1. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e, Alpha science International Ltd,2002

- 1. <u>https://nptel.ac.in/courses/111/105/111105121/</u>
- 2. <u>https://nptel.ac.in/courses/111/105/111105122/</u>
- 3. <u>https://nptel.ac.in/courses/111/107/111107108/</u>
- 4. http://202.53.81.118/ -> PVPSIT FED Moodle

					ENG	INEE	RING	PHYS	ICS						
Cours	se		20BS	1203	Year	•			Ι	Sem	ester		II		
Code															
Cours	se		Basic S	cience	Brai	nch		E	EE	Cou	rse Type	9	Theo	ory	
Categ	gory										• • •				
Credi	its		3		L-T-	<u>P</u>		3-	0-0	Prer	<u>equisite</u>	S	Ni	<u> </u>	
Conti	nuous	5	30)	Sem	ester H	£nd		/0	Tota	l v		100)	
Interi					Eval	uation	1			Mar	KS				
Evalu	auon					C		Jutaan	200						
Unon	SUCCA	eeful a	omnleti	on of th		ce the	stude	ot will	he able	a to					
CO1	Lind	lersta	nd the	electri	mac	netic	ontica	l com	nunica	tion an	d semic	onducto	r princi	nles in	
COI	tech	nical	aspects	$(\mathbf{L}2)$, mag	, inclue,	optica		nume	uion an	u senne	onducto	i princij	pies in	
CO2	Anr	chnical aspects. (L2)													
CO3	Apr	olv ba	sic laws	of elec	tromag	netism	and n	aterial	s for e	ngineeri	ng appli	cations.	(L3)		
CO4	Ana	lvze t	The basic laws of electromagnetism and materials for engineering applications. (L3)												
CO5	Exa	mine	the mec	hanism	of ele	ctroma	gnetic	, in sen	sors ar	nd semic	onducto	r device	s. (L4)		
CO6	Abi	lity t	o unde	understand the concepts of optical fibers, the theory of solids, laws of											
	elec	troma	<u>gneti</u> sm,	<u>princi</u>	ples of	<u>semic</u>	<u>ond</u> uct	or devi	ces an	<u>d sub</u> mi	<u>t a re</u> por	t	-		
	Co	ontrib	ution of	f Cours	se Out	comes	towar	ds ach	ievem	ent of P	rogram	Outcon	nes &		
		T		Strength of correlations (3:High, 2: Medium, 1:Low)											
	PO1	PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1															
CO2	3												1	2	
CO3	3												1	2	
CO4		3											1	2	
CO5		3											1	2	
CO6							~	Ļ	2	2		2	1	2	
TT	т						Syll	abus				ſ	14	1 001	
	NO.	Fib or	Ontio	Tata	duratio	i an ada	Syllabi			fileana		la and	Mappeo	a CO's	
1		Fibel	· Optics	s: Intro		on, adv	vantage	es or (optical	nibers,	principi	e and	CO1	,CO2	
		classi	fication	of fibe	e allg re fib	er opti	c com	nunica	tion fi	ber opti	r propaş	gation,	CO	5,	
		senso	rs (Tem	peratur	e. disn	laceme	ent and	force)	annlia	cations.	C		CO	6	
2		Diele	ctric an	d Mag	netic r	nateria	als	10100)	, " pp=1						
		Diele	ctric-ma	aterial	s: Int	roducti	ion, e	lectron	ic po	larizatio	on, diel	ectric			
		polar	izability	, susce	otibilit	y and	dielect	ric con	stant, 1	types of	polariza	ations			
		(Qua	itative),	frequer	ncy d	epende	ence	of po	olarizat	tion, L	orentz	field	CO1	CO3	
		(quar	titative)	, Claus	ius-Mo	ossotti	equation	on.					C01	,CO5 CO6	
		Mag	netic	materi	als:	Introd	luction	, ma	gnetic	dipo	le mo	ment,	004,	, 000	
		magn	etizatior	n, mag	gnetic	susce	eptibilit	y and	l perr	neability	y, origi	n of			
		permanent magnetic moment, classification of magnetic materials, domain theory, hysteresis, soft and hard magnetic materials													
2		Floor	y, nyster	esis, sc	nt and	nard n	nagneti	ic mate	Hals.						
3		Elect	rostatio	field.	Flect	ric no	tential	Coul	omhe	law and	1 Gauce	law			
		deriv	ation of	Coulo	mhs la	w from	m Gau	ss law	annli	cations	of Gauss	s law	CO1	CO3	
		(line	charge :	thin sh	eet of	charge	and so	olid ch	arged «	sphere)	Gauss 1	aw of	C05	,20 <i>5</i> . CO6	
		electr	ostatics	in diele	ectric r	nediun	n, Pois	son's a	nd Lar	lace equ	ations.			, 200	
		Mag	netostati	ic field	l: Bio-	-Savar	t law,	Farada	ay's ar	nd Amp	ere's lav	ws in			
		Magnetostatic field: Bio–Savart law, Faraday's and Ampere's laws in													

	integral and differential form, displacement current, continuity equation	
	and Maxwell's equations (qualitatively).	
4	Semiconductor Physics	
	Introduction, origin of energy band, intrinsic and extrinsic semiconductors,	
	generation and recombination, carrier concentration in intrinsic	CO1 CO3
	semiconductors, variation of Fermi level with temperature in intrinsic	CO4, CO6
	semiconductor, n-type and p-type semiconductors, carrier concentration	001,000
	in n type and p type semiconductors, variation of Fermi level with	
	temperature in extrinsic semiconductors.	
5	Semiconductor Devices	
	Drift and diffusion currents in semiconductors, Hall effect and its	CO1, CO2,
	applications, p-n junction diode formation and V-I characteristics, direct	C05,
	and indirect band gap semiconductors, construction and working of	CO6
	photodiode, LED, solar cell	
T	Learning Resources	
1 I I I	00KS	1:tion 2001
1.	K. K. Gaur, S. L. Gupta, Engineering Physics, Dhanpat Rai Publications, 8th Ed. S. O. Billai, Solid State Dhysica, New aga international publishers, 7th adition (201	(1001, 2001.)
Z.	S. O. Final, Solid State Flysics, New age international publishers, 7th edition (201	0)
1	A Taxt Book of Engineering Dhysics MN Avadhanulu & DC Kshrise	gar S Chand
1.	Publications fourth edition 2014	gai, S.Chanu
2	Semiconductor Devices & Physics S M Sze Wiley 2008	
2.	Applied Physics, P.K. Palanai Swamy, Sci-Tech Publications, December, 2018	
3. 4	Engineering Physics, Dr M Arumugam, Anuradha Publications, Second edition, 20	005
5.	Introduction To Electrodynamics, David L.Griffths, Pearson Education India L	earning Private
	Limited. Fourth edition. 2015.	
e- Reso	ources & other digital material	
1.	http://physicsforidiots.com/physics/electromagnetism/	
2.	https://www.arcelect.com/fibercable.htm	
3.	http://freevideolectures.com/Course/3048/Physics-of-Materials/36	
4.	https://www.iitk.ac.in/mse/electronic-materials-and-devices	

5. https://link.springer.com/chapter/10.1007/978-3-319-48933-9_35

	BASIC ELECTRICAL & ELECTRONICS ENGINEERING													
Cours	se		20ES	1201	Yea	r			Ι	Sem	ester		Ι	[
Code	~ ~		Encie		Dues	- ala			DD.	Com	T-m	-	The	
	se		Engine	ering	Бга	ncn		E	EE	Cou	rse Typ	e	Ine	ory
Credi	<u>;ui y</u> ite		3010		I -T	P		3_	0_0	Pror	oquisito	e l	N	1
Conti	nuo	116	3	<u>,</u> D	Som	- <u>1</u> octor I	Ind	-0	0-0 70		<u>equisite</u> 1	5	10	0
Interi	nal	us	5	0	Eval	luatior))		0	Mar	ks		10	0
Evalu	atio	n			Liva	uuuioi	-			1. Iul				
						C	ourse	Outcor	nes	1				
Upon	succ	essful	completi	on of t	he cou	rse, the	stude	nt will	be able	to				
C01	U	ndersta	nd the	basic	concer	ots of	DC ci	rcuits.	Electri	cal Ma	chines.	Concept	ts of El	ectronic
	De	evices a	nd Circ	uits and	d realiz	ze the	Applic	ations	of Elec	trical &	Electro	nics in 1	Interdisc	plinary
	Engineering Domains (L2)													
CO2	A	Apply the basic knowledge of mathematics, science and electrical engineering to obtain the												
	de	sired pa	arameter	s of El	ectric c	rcuits	and M	achine	s. (L3)					
CO3	A	nalyse	he beha	viour o	f Elect	ric circ	uits, tr	ansform	ners ar	nd Electi	rical ma	chines. (L4)	
CO4	A	oply the	e basic p	rincipl	es of E	lectron	ics to s	solve A	nalog	Circuits	. (L3)			
CO5	A	nalyse	the chara	cteristi	ics/ per	forma	nce par	ameter	s of El	ectronic	Circuits	s. (L4)		
CO6	Al	oility to	o invest	igate	various	s prob	lems i	n DC	circuit	s, Elect	rical M	achines	and El	ectronic
	De	evices a	nd Circu	iits and	l subm	it a re	port.							
		Contri	bution o	of Cour	se Ou	tcomes	s towa	rds ach	ievem	ent of P	rogram	Outcor	nes &	
	DO	1 DO		Streng	$\frac{1}{1000}$	PO6	tions (3:High	, 2: Mo	PO10	:Low)	DO12	DSO1	DSO2
CO1	FU		2 105	r04	ros	100	10/	100	F09	FOID	FUIT	FUIZ	1301	F 502
$\frac{CO1}{CO2}$	3												2	1
C02	5	3											$\frac{2}{2}$	1
CO4	3												2	1
CO_{1}	5	3											2	1
CO6				3					2	2			2	1
000							Svll	abus	_	_			_	-
Unit N	No.						Sylla	bus					Μ	lapped
							2							CO's
1		Basic	laws ar	nd The	orems	-DC (Circuit	s: Ohn	ns law,	Kirchh	off's La	ws, seri	es	
		and p	arallel r	resistiv	e circu	iits, sc	ource t	ransfor	matior	ns, delta	-wye co	onversio	n. CC	1 CO2
		Mesh	analysis	s, noda	al ana	lysis.	Superp	osition	theor	em, Th	evenin's	theorem	n, C	1,002,
		Norto	n's theor	em an	d maxi	imum	power	transfe	r theo	remwith	simple	exampl	es	,000
		(indep	<u>bendent</u>	source	s only).	1.	•	• • • •	7 1.	D 111			
2		DC I	lachine	s: Coi	nstruct	ion, w	orking	princ	iple,	voltage	Build	up, EN	IF CC	1,CO2,
		equati	on, Iorq	lue exp	ression	n, types	s of exc	citation	, types	of dc m	achines,	, necessi	ty CO)3,CO6
2		Trong	formar	es and	tructio	ncy.	kina =-	incial	EME	ametia	n 0 n 07	and she	rt	
3		rans	tests W	o. CUIIS altaga *	u ucuo	II, WOI	nition		, EIVIF	equal10	n, open	and shoi		$1 CO^{2}$
		Three	Phace 1	Induct	ion M	on uel	Constr	, iosses	worki	no prine	inle of tl	ree nha		J1,CO2,
		induct	ion mot	or.		.013.	Consul	uet1011,	W UI KII	15 Prine		nee piia		D3,CO6
Δ		Semio	onducto	or Dev	vices [.]	P-N I	unctio	n diod	e - R	asic or	eratino	princip	le.	
т		curren	t-voltage	e char	acteris	tics. h	alf-wa	verecti	fier. f	ull-wav	erectifie	r.rectifie	crs CC	01,CO4,
		with f	ilter can	acitor.	Zener a	liode a	s Volta	age Res	gulator			.,)5,CO6
5		Opera	ational A	Amplif	iers: T	he Ide	al Op	Amp. 7	The Inv	verting	Configu	ration-T	he CC	01,CO4.
-							1	1 7		0	0			, 7

	closed loop gain Effect of Finite open-loop gain. The Non-inverting CO5 CO6
	Configuration - The closed loop gain, Characteristics of Non Inverting
	Configuration, Effect of finite open loop gain, The voltage follower.
	Learning Resources
Text B	Books
1.	D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1st Edition, McGraw Hill
	Education (India) Private Limited, 2017.
2.	B.L.Theraja, Fundamentals of Electrical Engineering and Electronics, 1st Edition, S.Chand
	Publishing, New Delhi, 2006.
3.	Millman Jacob, Halkias C Christos, Electronic Devices and Circuits, 2 nd Edition, Tata
	Mcgrawhill Publications, 2007.
Refere	ence Books
1.	S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Education, 2011.
2.	Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2 nd Edition, Pearson
	Education, 2008.
3.	R.K.Rajput, Basic Electrical and Electronics Engineering, University Science Press, New Delhi,
	2012.
e- Res	ources & other digital material
1.	http://202.53.81.118/course/view.php?id=122

2. https://nptel.ac.in/courses/108105112/

				CON	IMUN	ICAT	IVE E	NGLI	SH II I	LAB				
C	ourse Code		20HS	1251		Year			Ι	5	Semester	r	II	
C Ca	ourse tegory		Huma	nities]	Branch	ı	E	EE	Co	ourse Ty	pe	La	b
C	redits		1.	5		L-T-P)	0-	0-3	Pr	erequisi	tes	Ni	1
Con In Eva	itinuou ternal iluatioi	n	15	5	Sen Ev	nester] valuati	End on		35		Total Marks		50)
						Co	ourse (Dutcon	nes					
Upon	succes	sful co	ompleti	on of tl	he cour	rse, the	stude	nt will	be able	e to				
CO1	1 Hone employability skills (L3)													
CO2	Develop an ability of making discussions, inferences and presentations (L3)													
CO3	Refine communication skills through various strategies (L4)													
CO4	CO4 Process the information in different contexts (L4)													
Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1									3	3		3	1	
CO2									3	3		3	1	
CO3									3	3		3	1	
CO4									3	3		3	1	
							Syll	abus						
Expt.						S	Syllabu	IS					Ma	pped
No.													C	O's
1	Liste	ening	for p	resent	ation	strate	egies a	and a	nsweri	ng que	estions	on the	CO1	, CO2,
2	spea	ker, a	ualenc	e, and	key p	oints E alida	a (indi	(idual)					- 004	
2	Polo	ting	a road	ing to	ng rr	a tal	s (mur lk/pros	ontatio	n	indersta	nding a	lifforant	CO1	CO^{2}
5	nersi	ung pectiv	a reau	ing ic trawin	σ infer	a tai ences	ik/pies	Cillatio	II — (unuersta	nung c	merem	C01	, CO2,
4	Forn	nal tea	m pres	entatio	ns usir	o PPT	slides	/audio-	visual	aids				
5	Iden	tifvin	yiews	and or	ninions	s expre	ssed h	v diffe	ent sn	eakers w	hile list	ening to	CO1	. CO3
	discu	ission	s			, enpre		,	Sur SP	canor of w	1110 1150		C04	, ,
6	Grou	p disc	cussion	on gen	eral to	pics							1	
7	Proc	essing	g of info	ormatic	on usin	g conte	ext clu	es whil	e lister	ing to ta	alks/lectu	ires	CO1	, CO3,
8	Role	plays	- peop	le fron	n vario	us field	ds of w	/ork		~			CO4	
9	Proc	essing	g of exp	olicit ir	forma	tion pr	esente	d in the	e text a	and imp	licit info	rmation	CO1, CO3,	
	infer	able f	rom the	e text o	r from	previo	us/bac	kgroun	d knov	vledge			CO4	
10	Moc	k inte	rviews	for job	s/inter	nships								

				E	NGIN	EERIN	NG PH	IYSIC	S LAB					
Cours	se		20BS	1252	Year	r			Ι	Sem	ester		II	
Code														
Cours	se		Basic S	cience	Brai	nch		E	EE	Cou	rse Type	e	The	ory
Categ	gory													
Credi	its		1.	5	L-T-	·P		0-	0-3	Prei	equisite	s	Ni	1
Conti	nuou	S	1:	5	Sem	ester I	End		35	Tota	ıl		50)
Interr	nal				Eval	luation	1			Mar	·ks			
Evalu	atior	1				~		a						
		<u>c 1</u>	1.1	6.1			ourse	Outcor	nes					
Upon	Jpon successful completion of the course, the student will be able to													
	De	monstr	ate the ir	nportar	nce of ($r_{1c} mat$	erial ai	id mea	sure ma	ignetic pa	aramete	rs. [L3]	
CO_2	Ide	Identify the type of semiconductor using hall effect and measure the energy band gap. [L3]												
CO_{4}	EX	amine the characteristics of photodiode, p-n junction diode and solar cell. [L4]												
04	me	Assess the intensity of the magnetic field of circular coll carrying current with distance and measure resistance using four probe method [I 4]												
CO5	Est	Estimate the acceptance angle of an optical fiber and numerical aperture. [I.4]												
CO6	CO6 Summarize and tabulate the experimental observations and output.													
	Contribution of Course Outcomes towards achievement of Program Outcomes &													
				Streng	th of c	orrela	tions (3:High	, 2: Me	edium,	1:Low)			
	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			3								2	1	2
CO2	3			3								2	1	2
CO3	3			3								2	1	2
CO4	3			3								2	1	2
CO5	3			3								2	1	2
CO6	3			3								2	1	2
							Syll	labus					1	
Exp	t.						Syllabı	18					Mappe	d CO's
No		D		D · 1										
		Dete	mine the	e Dieleo	ctric C	onstan	t of vai	rious Se	$\frac{110}{2}$ sat	nples.			CO1	,CO6
2		Deter	rmine the	e Magn	etic Su	iscepti		y Gouy	y's Me	thod.				
3		Deter	mine the	E Hall C	v Dom	d con o	ing Ha	misond	<u>et expe</u>	riment.			CO2	,CO6
4		Stud	the abo	ractorio	y Dano	u gap 0 was of	a Dha	to Diec	uctor.					
5		Illust	rate the V	V_I the	charac	ves UI	$a \Gamma II0$	N iunc	tion D	iode				001
7		Drau	$\frac{1}{1}$ the V ₋ I	v -1 ule	teristic	s of a	Solar ('ell					CO3	,CO6
8		Deter	mine Th	ne Mao	netic	Field a	long f	he avis	ofa	Circula	Coil ca	rrvino		
		curre	nt.	10 11102	,iietie 1		iong t		, 01 a '			y111g	_	~ ~
9		Deter	rmine the	e Resist	ivity o	of Semi	condu	ctor by	Four F	Probe M	ethod.		CO4	,CO6
10		Deter	mine th	e Num	erical	Apertu	re of	a give	n Optio	cal Fibr	e and F	ind its		001
		Acceptance Angle.												

Text Books

1. RamaraoSri, Choudary Nityanand and Prasad Daruka, "Lab Manual of Engineering Physics" Vth ed., Excell Books, 2010

Reference Books

1. Semiconductor Devices & Physics, S.M.Sze, Wiley, 2008.

- 1. <u>https://nptel.ac.in/courses/115/105/115105120/</u>
- 2. <u>https://nptel.ac.in/courses/115/107/115107095/</u>
- 3. https://nptel.ac.in/courses/115/104/115104109/
- 4. http://www.physicsclassroom.com/The-Laboratory
- 5. <u>https://www.vlab.co.in/broad-area-physical-sciences</u>
- 6. https://www.niser.ac.in/sps/teaching-laboratories

	BASIC ELECTRICAL & ELECTRONICS ENGINEERING LAB														
Course	e		20ES	1251	Year	•			Ι	Sem	ester		II		
Code					-					~					
Cours	e		Engine	ering	Brar	nch		E	EE	Cou	rse Typ	e	La	b	
Calego	ory			nce 5	ТТ	D		0	0.3	Dror	oquisito	NG .	Ni	1	
Contin	S NOUS		1 14	5 5	L-1- Som	octor F	Ind	-0-	<u>0-5</u> 25	Tota	equisite	\$	50		
Intern	al		1.)	Eval	uation			55	Mar	n ks		50	,	
Evalua	ation				1.1 v u	uuuion				1,1ui					
						Cou	irse O	utcom	es	I					
Upon s	successf	ul com	pletion	of the	course	e, the st	tudent	will be	able to)					
CO1	Арр	ly tech	iniques	/proced	lures of	f Elect	rical &	Electr	onics I	Engineer	ring to se	olve pr	oblems (l	L3).	
CO2	Con	duct ex	perime	ents as a	a team	/ indiv	idual b	y using	g equip	ment av	vailable	in the l	aboratory	<i>.</i>	
CO3	Exa	mine t	he netw	ork the	eorems	and K	irchho	ff's lav	vs for I	DC elect	rical cir	cuits (l			
CO4	Analyse the open circuit characteristic of DC shunt generator and efficiency of single phase														
005	transformer (L4).														
CO5	Ana	iyse th	e chara	cteristi	cs/ per	tormar	ice par	ameter	s of El	ectronic	and An	alog C	rcuits. (L	.4)	
006	Contribution of Course Outcomes towards achievement of Program Outcomes &														
	Con	uridui	1011 01 S1	Course trengtł	of co	omes t rrelati	owaru	S acmo High	2. Med	lium 1·l	ogram (low)	Juicoi	lies a		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	2. Mice	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	102	105	3	100	100	107	100	107	1010	1011	1012	1	1	
CO2				3	3				3				1	1	
CO3		3		3									1	1	
CO4		3		3									1	1	
CO5		3		3									1	1	
CO6				3						3			1	1	
							Sylla	bus							
Expt.						Sylla	lbus						Mapped	CO's	
No.					C				·						
					C	onduct	any ter	1 exper	iments				<u>CO1 C</u>	02	
1	Verific	ation o	of Kircl	nhoff's	Laws	KVL a	nd KC	L.					CO1,C	02, '06	
													<u> </u>	02	
2	Verific	ation o	of DC S	Superpo	osition	Theore	em.						CO3,C	206	
2	V : 6: .		. с . т		T1		NT						C01,C	O2,	
3	v erific	auon (or rnev	emms	1 neore	in and	INORTOI	is the	orem.				CO3,C	206	
Δ	Open c	circuit	charact	eristics	/magn	etizatio	on char	acteris	tics of	DC shu	nt		CO1,C	O2,	
-	genera	tor.											CO4,C	206	
5	OC and	d SC T	ests on	single	phase	transfo	ormer.						CO1,C	O2,	
				8	1								CO4,C	206	
6	Voltag	e Curr	ent Cha	aracteri	stics of	f a p-n	Junctio	on Dio	de.				COI,C	02, 106	
	_												$\frac{003,0}{001,0}$	02	
7	Half w	ave rec	ctifier v	with an	d with	out filte	er.						CO1,C	02, 206	
													<u> </u>	02.	
8	Full wa	ave rec	tifier w	ith and	l witho	out filte	er.						CO5,C	206	
9	Voltag	e Regu	lation	with Ze	ener Di	iode.							<u>C</u> 01,C	O2,	
L	Voltage Regulation with Zener Diode.														

		CO5,CO6						
10	Inverting and Non-inverting Amplifier Design with On-amp	CO1,CO2,						
10	Inverting and Non-Inverting Amplitier Design with Op-amp.	CO5,CO6						
11	Verification of KCL and KVL using PSPICE	CO1,CO2,						
11	vernication of KCE and KVE using 151 ICE.	CO3,CO6						
12	Verification of Network Theorems using PSPICE	CO1,CO2,						
12	venifeation of retwork medicine using ror roll.	CO3,CO6						
13	Diode and Transistor Circuit Analysis using PSPICE.	CO1,CO2,						
		CO5,CO6						
14	Inverting and Non-inverting Amplifier Design with Op-ampusing PSPICE.	CO1,CO2,						
		C05,C06						
Learning Kesources								
1 D. D. Kathani, J. I. Nagrath, David Electronical and Electronical Engineering, 1st Edition, McCorrow Hill								
1.	1. D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1 st Edition, McGraw Hill							
2	Education (India) Private Limited, 2017.	Edition C Chand						
Ζ.	B.L. Theraja, Fundamentals of Electrical Engineering and Electronics, 1 Publishing New Delhi 2006	Edition, S.Chand						
3	Millman Jacob Halkias C Christos Electronic Devices and Circuits	2 nd Edition Tata						
5.	Mcgrawhill Publications, 2007.	2 Edition, Tutu						
Refere	ence Books							
1.	S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Educat	ion, 2011.						
2.	Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2 nd	Edition, Pearson						
	Education, 2008.							
3.	R.K.Rajput, Basic Electrical and Electronics Engineering, University Science	Press, New Delhi,						
	2012.							
e- Resources & other digital material								
1.	http://202.53.81.118/course/view.php?id=122							
2.	https://nptel.ac.in/courses/108105112/							

					В	ASIC	WOR	KSHO	P					
Cours Code	se		20ES12	252	Yea	r		Ι		Sem	ester		Π	
Cours Categ	se ory		Engine Science	ering	Brai	nch		ECE		Cou	rse Typ	e	Lab	
Credi	ts		3		L-T-	-P		1-0-4		Prer	equisite	S	Nil	
Conti Interi Evalu	nuou nal latioi	ıs 1	15		Sem Eval	Semester End Evaluation		35		Tota Mar	Total Marks		50	
		_				Co	ourse (Dutcon	ies					
Upon	succ	essful o	completi	on of t	he cou	rse, the	stude	nt will	be able	to				
CO1 Study and practice on basic hand tools and their operations. (L3)														
CO2	Pra	actice	on man	ufactu	ring o	of com	ponen	ts usir	ng wor	kshop	trades i	includi	ng Tin s	mithy,
	fitt	ing an	d carpe	ntry. (L3)									
CO3	Ap	ply ba	sic elect	rical e	nginee	ering k	nowle	dge for	house	wiring	and sol	dering	practice	. (L3)
CO4	De	monstr	ate basic	c conce	pts of	softwa	re insta	allation	s, oper	ating sy	stems ar	nd netwo	orking. (L3)
	Contribution of Course Outcomes towards achievement of Program Outcomes &													
I	DO	DO		Streng	th of c	orrela	tions ($\frac{3:High}{DOS}$, 2: Me	$\frac{1}{10000000000000000000000000000000000$:LOW)	DO12	DCO1	DEO2
COL	2	PO2	2 PO3	P04	2	2	PU/	PUð	PU9	POIO	2	2	2	PSO2
C01	3	$\frac{2}{2}$				$\frac{2}{2}$			3		2	$\frac{2}{2}$	3	$\frac{2}{2}$
CO_2	3	$\frac{2}{2}$				$\frac{2}{2}$			3		$\frac{2}{2}$	$\frac{2}{2}$	3	$\frac{2}{2}$
CO_4	3	$\frac{2}{2}$	2	2	2	2			3		$\frac{2}{2}$	$\frac{2}{2}$	3	$\frac{2}{2}$
0.04	5	4	2	-	-	4	Svll	abus	5		2	2	5	
Unit N	No.						Svllab	us					Mappe	d CO's
1		Far	niliarity	with	differ	ent typ	bes of	wood	s and	tools 1	ised in	wood		
		WO	rking an	d mak	e follo	wing j	oints							
			1. Half	– Lap	joint.								CC)1,
			2. Mor	tise an	d Teno	on join	t.						C	J2
			3. Corr	her Do	vetail	joint of	r Bridl	e joint.						
2		Far	niliarity	with	differe	nt type	es of t	cools us	sed in	sheet n	netal wo	orking,		
		De	velopme	ents of	IOIIOW	ing she	eet me	tal job	from (JI sheet	S			
			1. Tapt 2 Con	ical fu	iy nnel								CC)1,
			3. Elbo	w nine	2								CO	52
3		Far	niliarity	with	differe	ent typ	bes of	tools	used i	n fittin	g and d	the the		
		foll	lowing f	itting e	exercis	ses 51					C			
			1. V-fi	t									CC)1.
			2. Dov	etail fi	t								C	J2
3. Semi-circular fit														
4		F-	4. B1Cy	cle tir	e punc	ture an	id chai	nge of	two wi	heeler ti	re			
4		ra moko	immarit the follo	ies wi	un all	tions	types	01 Da	isic ei	ectrical	circuit	s and		
		шаке 1	Pren	aratio	onnet of a c	circuit	for Pa	rallel a	nd seri	es conr	nection		~-	. 1
		2	. Pren	aratio	ofac	circuit	for Go	down	lightir	ig jising	g Two-w	/av		\mathcal{I}
		3	swit	ch to c	onnect	t tube l	ight.			-0 -00112	, 100 0	<i></i> ,		J3
		4	. Sold	lering of	of wire	es	0							
5		1.	Student	s hav	e to b	e give	en a 🛛	PC wh	ich do	bes not	boot d	lue to		24
	improper assembly or defective peripherals. They should identify													

 and fix it to get the computer back to working condition. anstallation of MS-Windows and Linux. Connection of LAN and access the Internet, Configuration of TCP/IP setting and access of websites and email. Exploring MS-Word and sample tasks. Document creation and editing text documents in your web browser using Google docs. 	
Learning Resources	

Work shop Manual - P.Kannaiah/ K.L.Narayana/ Scitech Publishers.
 Workshop Manual / Venkat Reddy/ BS Publications/Sixth Edition.

II B.TECH I SEMESTER SYLLABUS

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20BS1302	Numerical Methods & Complex Variables	3	3	0	0	30	70	100
20ES1302	Circuit Theory	3	3	0	0	30	70	100
20EE3301	Electronic Devices & Amplifier Circuits	3	3	0	0	30	70	100
20EE3302	Signals and Systems	3	3	0	0	30	70	100
20EE3303	Electrical Machines-I	3	3	0	0	30	70	100
20ES1352	Circuit Theory Lab	1.5	0	0	3	15	35	50
20EE3351	Electronic Devices & Amplifier Circuits Lab	1.5	0	0	3	15	35	50
20EE3352	Electrical Machines-I Lab	1.5	0	0	3	15	35	50
20808352	Electrical Workshop	2	1	0	2	0	50	50
20MC1341A /20MC1341B	NSS / NCC	-	0	0	2	-	-	-
20EE3391	Community Service Project	4	0	0	-		100	
Total		21.5	16	0	13			

II B.Tech., I Semester

L - Lecture T - Tutorial P – Practical

NUMERICAL METHODS & COMILLEA VARIABLES											
Course Code	20BS1302	Year	II	Semester	Ι						
Course Category	Basic Sciences course	Branch	ECE, EEE	Course Type	Theory						
Credits	3	L-T-P	3-0-0	Prerequisites	Nil						
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100						

NUMERICAL METHODS & COMPLEX VARIABLES

	Course Outcomes
Af	ter successful completion of the course, the student will be able to
CO1	Understand the basic concepts of Numerical Methods and complex variables.(L2)
CO2	Apply different Numerical methods to solve the problems of numerical differentiation, integration, ordinary differential equations.(L3)
CO3	Construct an analytic function and complex power series. (L3)
CO4	Estimate the interpolated values, approximate roots, areas and derivatives. (L4)
CO5	Analyse the region to evaluate integrals. (L4)
CO6	Apply the concepts of Numerical methods and Complex variables to solve the problems and submit a report. (L3)

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3-High, 2: Medium, 1:Low)														
	PO1	PO 2	PO3	РО 4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3								2	2				
CO3	3								2	2				
CO4		3												
CO5		3												
CO6	3								2	2				

Unit No.	Contents	Mapped COs
Ι	Solution to Algebraic and Transcendental Equations Solution of algebraic and transcendental equations: Bisection ⁻ method, methodof false position and Newton-Raphson's method. Finite differences, relation between operators, interpolation using Newton'sforward and backward difference formulae. Interpolation with unequal intervals: Lagrange's formula. (All theorems/properties without proofs)	CO1,CO2, CO4,CO6
	Numerical Differentiation and Integration	
п	Numerical Differentiation- Newton's forward and backward difference 1 rd 3 th formulae. Numerical integration- trapezoidal rule, Simpson's - and - rules.	CO1,CO2, CO4,CO6
	Ordinary differential equations: Euler's, modified Euler's, Runge-Kutta methodof fourth order for solving first order equations. (All theorems/properties withoutproofs)	
III	Functions of a complex variable: Differentiability – Analyticity – Properties – Cauchy-Riemann equations in Cartesianand polar coordinates. Harmonic and conjugate harmonic functions – Milne- Thompson's method.	CO1,CO3, CO5,CO6
	(All theorems/properties without proofs)	
	Complex Integration:	
IV	Line integral – Evaluation along a path– Cauchy's integral theorem – Cauchy's integral formula – Generalized integral formula. Complex power series: Radius of convergence – Expansion in Taylor's series, Maclaurin's series and Laurent series.	CO1,CO3, CO5,CO6
	(All theorems/properties without proofs)	
V	Residue – Evaluation of residues - Residue theorem - Evaluation of integrals of the 2π ∞ form $\int_0^{-\infty} f(\cos\theta, \sin\theta)d\theta$ and $\int_{-\infty}^{-\infty} f(x)dx$ (All theorems/properties without proofs)	CO1,CO3, CO5,CO6

Text Book(s)

- 1. B.S. Grewal, *Higher Engineering Mathematics*, Khanna Publishers, 44/e, 2019.
- 2. Engineering Mathematics (Volume III) S. Chand T. K. V. Iyengar, B. Krishna
- Gandhi, S.Ranganatham, M.V.S.S.N. Prasad- 9th Revised Edition: 2012.

Reference Book(s)

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105134/
- 3. <u>https://nptel.ac.in/courses/111/106/111106141/</u>

Course Code	20ES1302	Year	II	Semester(s)	Ι
Course Category	Engineering Science	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE (20ES1201)
Continuous Internal Evaluation	30	Semester End Evaluation:	70	Total Marks:	100

CIRCUIT THEORY

	Course Outcomes										
Upon su	accessful completion of the course, the student will be able to										
CO1	Understand the basic concepts of AC circuits, Resonance, Concepts of magnetically coupled circuits, two port networks, transient analysis and three phase circuits(L2)										
CO2	Apply the basic electrical laws, engineering mathematics and sciences to obtain, the desired circuit variables, steady state, transient responses of electrical circuits and relationship between two port network parameters. (L3)										
CO3	Apply the principles of electrical engineering to solve resonant circuits, magnetically coupled circuits, three phase networks and verify circuit theorems. (L3)										
CO4	Analyze the different three phase circuit configurations and transient response of electrical circuits. (L4)										
CO5	Analyze two port networks, super mesh and super node circuits to obtain desired parameters. (L4)										
CO6	Investigate various electrical circuit problems and submit a report										

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												3	1
CO3	3												3	1
CO4		2											3	1
CO5		2											3	1
CO6									3	3			2	

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	<b>Sinusoids &amp; Phasors:</b> Sinusoids, Phase, Phase difference, Phasors, phasor relationships for circuit elements. Complex and polar form representations, J-notation, Effective values of current and voltage. Instantaneous power, average power, Apparent power, real power, reactive power, power triangle, complex power, power factor. Steady state analysis of RL, RC and RLC circuits.	CO 1 CO 2 CO 6
II	<b>Resonance:</b> Series resonance, Parallel resonance, bandwidth, quality factor. Super Mesh and Super Node, Reciprocity theorem, Millman's theorem, Compensation theorem and Tellegen's theorem.	CO 1 CO 3 CO 5 CO 6
III	Magnetically coupled circuits, Self-Inductance, Mutual Inductance, Coupling coefficient, Dot convention. Two port networks - impedance parameters, admittance parameters, Hybrid parameters and Transmission parameters, relationships between parameters.	CO 1 CO 2 CO 3 CO 5 CO 6
IV	<b>Transient Analysis:</b> Time response of RL, RC, RLC series circuits for Zero input, Step input, sinusoidal excitation - Initial conditions-solution approachusing differential equation and Laplace transforms.	CO 1 CO 2 CO 4 CO 6
V	Three –phase circuits: Phase sequence, Relation between line and phase voltages and currents in balanced systems – Analysis of balanced three phase circuits – two wattmeter method for measurement of active & reactive power, measurement of three phase reactive power using one wattmeter method.	CO 1 CO 3 CO 4 CO 6

#### **Text Books**

- 1. William H. Hayt Jr., Jack E. Kemmerly, 'Engineering Circuit Analysis', 9/e, McGraw Hill,2020.
- 2. Charles K.Alexander, Mathew N.O.Sadiku, "Fundamentals of Electric Circuits" (Sixth Edition), Tata McGraw-Hill,2019.

# **Reference Books**

- 1. Van Valkenburg M.E, 'Network Analysis', 3/e, Prentice Hall India, 2014
- 2. Sudhakar and ShyamMohan ,Network Theory', ,2/e, TMH,2012.
- 3. Schaum's outlineseries—Basiccircuit analysis,McGraw-Hill Professional, 2012
- 4. A.Chakrabarti, Circuit Theory Analysis and Synthesis', 7/e, DhanpatRai and Company, 2014.

#### Web Links

- 1. https://nptel.ac.in/courses/117/106/117106108/
- 2. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/</u>

# ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS

<b>Course Code</b>	<b>20EE3301</b>	Year	II	Semester	Ι
Course	Professional	Branch	FFF	Course Type	Theory
Category	Core				Theory
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous		Semester		<b>Total Marks</b>	
Internal	30	End	70		100
Evaluation		Evaluation			

# **Course Outcomes**

Upon s	Upon successful completion of the course, the student will be able to							
CO1	Describe the basic concepts of BJT, MOSFET Circuits and IC design Philosophy. (L2)							
CO2	Analyze the BJT and MOSFET Characteristics. (L4)							
CO3	Analyze the Amplifiers using MOSFET (L4)							
<b>CO4</b>	Apply the different biasing techniques of BJT, MOSFET and IC Design (L3)							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2
CO1	2									2			2	
CO2		3								3			3	
CO3		3								3			3	
CO4	3									3			3	

Syllabus									
Unit	Contents	Mapped CO							
No.									
Ι	<b>Bipolar Junction Transistors:</b> Device structure and physical operation, current-voltage characteristics, the BJT as an amplifier and as a switch, biasing in BJT amplifier circuits, small signal operation and models.	CO1,CO2,CO4							
II	<b>MOS Field-Effect Transistors:</b> Device structure and physical operation, current-voltage characteristics, the MOSFET as an amplifier and as a switch, biasing in MOS amplifier circuits, small signal operation and models.	CO1,CO2,CO4							
III	<b>Single Stage MOSFET Amplifiers:</b> Estimating 3dB frequency of amplifiers, Basic MOSFET amplifier configurations, MOSFET internal capacitances and high frequency model. Low Frequency and High Frequency Response Of MOSFET Amplifiers	CO1, CO3							
IV	<b>Differential Amplifiers:</b> The MOS differential pair, small-signal operation of the MOS differential pair, other non-ideal characteristics of MOS differential amplifier, the MOS differential amplifier with active load, multistage MOS amplifiers.	CO1, CO3							
v	<b>IC Design Philosophy</b> : Comparison of the MOSFET and the BJT, IC biasing-current sources, current mirrors and current-steering circuits,	C01,C04							

#### **Text Books**

1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.

## **Reference Books**

1. BehzadRazavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.

2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.

3. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

e- Resources & other digital material

http://www.faadooengineers.com/threads/4615-Electronic-Devices-and-Circuit-Theory-Boylestadand-Nashelsky

https://docplayer.net/53934331-J-b-gupta-electronic-devices-and-circuits.html

# SIGNALS AND SYSTEMS

Course Code	20EE3302	Year	II	Semester	Ι
<b>Course Category</b>	Professional	Branch	EEE	Course Type	Theory
	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	<b>Total Marks:</b>	100
Internal		<b>Evaluation:</b>			
<b>Evaluation:</b>					

	Course Outcomes												
Upon s	Upon successful completion of the course, the student will be able to												
CO1	<b>Identify</b> different characteristics of signals and systems (L2).												
CO2	<b>Apply</b> different signal operations to characterize systems (L3).												
<b>CO3</b>	Apply the various transform techniques to evaluate periodic and aperiodic signals (L3).												
<b>CO4</b>	Analyse the various continuous and discrete-time signals using various transform												
	techniques (L4).												

Co	Contribution of Course Outcomes towards achievement of Program Outcomes &												
	Strength of correlations (3:High, 2: Medium, 1:Low)												
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POIO	POIT	PO12	PSOI	PSO2
CO1	2								2	2			1	
CO2	3								2	2			2	1
CO3	3								2	2			2	1
CO4		3							3	3			2	1

Т

	Syllabus									
Unit No.	Contents	Mapped CO								
Ι	<b>Signals and Systems:</b> Continuous-time and Discrete-time signals, Transformations of the independent variable, Exponential and Sinusoidal signals, The unit impulse and unit step functions, Continuous-time and Discrete-time systems, Basic System properties.	CO1, CO2								
II	<b>Linear Time Invariant Systems(LTI systems):</b> Discrete-time LTI systems, The convolution sum, Continuous time LTI systems, The convolution Integral, Properties of Linear Time-Invariant Systems.	CO1,CO2								
III	<b>Fourier analysis of Continuous Time Signals and Systems:</b> Fourier series representation of continuous time periodic signals, convergence of the Fourier series, Properties of continuous-time Fourier series. The Continuous-Time Fourier Transform: The Fourier transform for periodic signals. Properties of the Continuous-time Fourier transform, Systems characterized by linear constant- coefficient differential equations.	CO1, CO3, CO4								
IV	<b>Fourier analysis of Discrete Time Signals and Systems:</b> The Discrete-Time Fourier Transform, Properties of the Discrete-time Fourier transform, The Fourier transform for periodic signals. Systems characterized by linear constant-coefficient difference	CO1, CO3, CO4								

	equations.	
V	Analysis of Continuous time and Discrete time signals using Laplace Transform and Z Transform: The Laplace Transform: The Region of convergence for Laplace transforms, the Inverse Laplace transform, Properties of the Laplace transform. The Z- Transform: The Region of Convergence for the Z-transform, The Inverse Z-transform, Properties of the Z-transform.	CO1, CO3, CO4

## **Text Books**

1. Alan V. Oppenheim, Alan S. Wilsky with S.Hamid Nawab, 'Signals and Systems', 2/e, Pearson Education, 1997.

## **Reference Books**

- 1. Simon Haykin, Barry Van Veen, 'Signals and Systems', 2/e, Wiley Student Edition.
- 2. Bhagawandas P. Lathi, 'Linear Signals and Systems', Oxford University Press, 2009.
- 3. Signals and Systems using MATLAB, Kindle Edition, Luis Chaparro

- 1. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/TOC-M1.htm
- 2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/Course%20Objective.htm.
- 3. <u>http://www.stanford.edu/~boyd.ee102</u>
- 4. <u>http://www.ece.gatech.edu/users/bonnie/book</u>
- 5. http://ocw.mit.edu

# **ELECTRICAL MACHINES-I**

Course Code	20EE3303	Year	II	Semester(s)	Ι
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisite s	Basic Electrical and Electronics Engineering
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of magnetic circuits, construction and operation of DC					
	machines, single phase transformer, auto transformer and three phase transformer. (L2)					
CO2	Apply the basic knowledge to obtain the desired parameters/performance characteristics					
	of magnetic systems and DC machines. (L3)					
CO3	Apply the basic knowledge to obtain the desired parameters/performance characteristics					
	of single phase transformer, auto transformer and three phase transformer. (L3)					
CO4	Analyze the performance characteristics, speed control methods and testing techniques					
	of DC machines. (L4)					
CO5	Analyze the different configurations and testing techniques of single phase transformer,					
	auto transformer and three phase transformer. (L4)					
CO6	Submit a report in DC machines, single phase transformer, auto transformer and three phase					
	transformer.					

Contribution of Course Outcomes towards achievement of Program Outcomes &														
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3												2	1
CO4		3											2	1
CO5		3											2	1
CO6									3	3			2	1

	SYLLABUS						
Unit No.	Contents	Mappe d CO					
Ι	Magnetic circuits: Definition of magnetic quantities, analysis of	CO1					
	magnetic circuits- series, parallel, leakage flux, comparison of	CO2					
	magnetic and electric circuits. B-H curve of magnetic materials; flux-	CO6					
	linkage vs current characteristic of magnetic circuits;						
	Energy in Magnetic Systems-Field energy and mechanical force-singly and						
	doubly excited magnetic field systems- forces and torques in systems with						
II	DC Generators: Principle of operation, armature winding - lap and wave	CO1					
	windings, separately and self-excited generators, armature reaction-	CO2					
	cross magnetization and demagnetization AT/pole, compensating	CO4					
	winding, commutation process, methods of improving commutation,	CO6					
	voltage build-up in a shunt generator, critical field resistance and critical						
	speed, internal and external characteristics of shunt, series and						
	compound generators, parallel operation.						
III	DC Motors: Principle of operation, characteristics of shunt, series and	CO1					
	compound motor, speed control methods, 4-point starter- design of	CO2					
	starter elements, losses in DC machine, testing of DC machine – No	CO4					
	load test, load test, Hopkinson's test, retardation test and field test.	CO6					
IV	Single-Phase Transformers: Principle of operation, ideal transformer,	CO1					
	transformer under no load and on load with Phasor diagrams,	CO3					
	equivalent circuit, condition for maximum efficiency and voltage	CO5					
	regulation, all day efficiency. Determination of equivalent circuit	CO6					
	parameters, efficiency at different loadings and regulation using O.C and S.C						
	test, polarity test, back-to-back test, separation of hysteresis and eddy						
<b>X</b> 7	current losses, Parallel operation of single-phase transformers.	001					
V	Autotransformers - construction, principle of operation, applications						
	and comparison with two winding transformer.	CO3					
	fortures. Spott connection Tap changing transformers. No. load and	C05					
	on load tap changing of transformers						
	on-toad tap-changing of transformers.						

- 1. Electrical Machinery by Dr.P. S Bimbhra, 7/e, Khanna Publishers, 2018.
- 2. Electric Machines by I.J. Nagarath and D.P. Kothari, 4/e, McGraw Hill, 2010.

## **Reference Books**

**Text Books** 

- **1.** Theory and performance of Electrical Machines by J.B. Gupta, Katson Publishers.
- 2. Performance and Design of DC Machines by A.E. Clayton and N N Hancock, Oxford, 1987
- 3. Electrical Machines by Abhijit Chakrabarti, Sudipta Debnath, 1/e, Mc Graw Hill,2015.
- 4. Electric Machine Fundamentals by S.J. Chapman, 5/e, McGraw Hill, 2011.

# e- Resources

https://nptel.ac.in/courses/108/105/108105155/
# **CIRCUIT THEORY LAB**

Course Code	20ES1352	Year	II	Semester(s)	Ι
Course Category	Engineering Science	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	BEEE Lab
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

	Course Outcomes
Upon s	uccessful completion of the course, the student will be able to
CO1	Analyze response in a given network by using theorems. (L4)
CO2	Determine two port network parameters of electrical network and self & mutual inductance of coupled circuits. (L3)
CO3	Calculate resonance frequency of RLC circuits, three phase power drawn by balanced circuits. (L3)
CO4	<b>Simulate</b> electrical circuits to verify network theorems and obtain their transient behaviour using PSPICE tools. (L4)
CO5	Conduct experiments as a <b>team / individual</b> by using equipment available in the laboratory
CO6	Make an effective <b>report</b> based on experiments

#### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

							(-			,				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3		3									3	1
CO2	3			3									3	1
CO3	3			3									3	1
CO4		3		3	3								3	1
CO5					3				3				3	1
CO6										3			3	1

	Syllabus					
Expt.	Contents	Mapped				
No.		CO				
	PART-A(Any Eight Experiments)					
1	Verification of Maximum Power Transfer Theorem	CO1				
2	Verification of Reciprocity Theorem	CO5				
3	Verification of Millman's Theorem	CO6				
4	Verification of Compensation Theorem					
		CO3				
5	Series and Parallel Resonance with frequency variations					
6	Determination of Self, Mutual Inductances and Coefficient of coupling	CO2				
7	Determination of impedance and admittance Parameters	CO5				
8	Determination of Transmission and hybrid parameters	CO6				
9	Measurement of Active& Reactive Power using two wattmeter method	CO3				
10	Managurament of Reactive Dewer using one wettmater method					
10	Measurement of Reactive I ower using one wattineter method	CO6				

	PART-B: PSPICE SIMULATION OF ELECTRIC CIRCUITS (Any Two Experiments)					
11	Mesh and Nodal Analysis using PSpice	CO 4				
12	Verification of Thevenin's and Norton's Theorem using PSpice	CO 5				
13	Verification of Superposition theorem using PSpice	CO 6				
14	DC Transient response using PSpice					
15	AC Transient response using PSpice					
	LearningResources					
Te	xtBooks					
1.	Charles K.Alexander, Mathew N.O.Sadiku,"Fundamentals of Electric					
	Circuits"(SixthEdition), Tata McGraw-Hill.					
2.	Sudhakar and Shyammohan S Palli, Circuits and Networks: Analysis and Synthe	esis,				
	FifthEdition,McGraw-HillEducation.					

# ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS LAB

<b>Course Code</b>	20EE3351	Year	II	Semester	Ι
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

CO1	Analyze the devices BJT and MOSFET to model their small signal behavior. (L4)
CO2	Apply the network analysis techniques to find the parameters of BJT and MOSFET
	based amplifiers. (L3)
CO3	Analyze NMOS differential amplifiers for gain, input common mode range, power
	dissipation and CMRR. (L4)
CO4	Evaluate the performance of NMOS Current Mirror and to develop PCB Layout for
	Astable Multivibrator.(L5)
CO5	Make an effective report based on experiments.

	(	Contrik	oution (	of Cour Streng	se Out	comes ( rrelatio	towards ons (3:1	s achiev High, 2:	vement : Mediu	of Prog m, 1:Lo	ram Out w)	comes &	,	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3							3				3	
CO2	3								3				3	
CO3		2							2				2	
CO4			2						2				2	
CO5										3				

# SYLLABUS

1	Any Ten Experiments (H/W or Simulation)							
Expt. No.	Contents	Mapped CO						
1	Voltage-Current Characteristics of BJT / Measurement of scale current & common emitter current gain	CO1, CO5						
2	Measurement of small signal parameters $(g_m, r_o, r_\pi, r_e)$ of BJT at a given operating (Q) point.	CO1 CO5						
3	Implement BJT amplifier and Inverter logic gate	CO2, CO5						
4	Voltage-Current Characteristics of MOSFET / Measurement of threshold voltage	CO1, CO5						
5	Measurement of small signal parameters $(g_m, ro, g_{mb})$ of MOSFET at a given operating point.	CO1, CO5						
6	Analyze Common Source Amplifier for Gain, Power dissipation requirements	CO2, CO5						
7	Design and Simulation of Common Drain Amplifier (Voltage Buffer) for Gain, Output Impedance, Level Shift requirements	CO2, CO5						
8	Analyze the necessary parameters for Basic NMOS Differential Pair.	CO3, CO5						

9	Design and Simulation of Differential Amplifier with active current mirror load for gain, power dissipation CMRR requirements.	CO3, CO5
10	Analyze the basic NMOS current mirror and current steering circuit	CO4, CO5
11	Simulate the PCB fabrication of a BJT Multivibrator Circuit	CO4, CO5

#### **Text Books**

1.Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.

#### **Reference Books**

1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.

2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.

3. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

#### e- Resources & other digital material

https://www.researchgate.net/publication/314154179_Electronics_Lab_Manual http://abexp.aiaiai.dk/electronic_devices_and_circuits_lab_manual_bgpltd.pdf

## **ELECTRICAL MACHINES-I LAB**

Course Code	20EE3352	Year	II	Semester(s)	Ι
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	Basic Electrical and Electronics Engineering Lab
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

	Course Outcomes
Upon s	successful completion of the course, the student will be able to
CO1	Analyze the load characteristics of D.C generators. (L4)
CO2	Obtain the performance characteristics and speed control characteristics of DC motor (L3)
<b>CO3</b>	Determine efficiency of D.C machine. (L3)
CO4	Obtain the characteristics and testing methods of single-phase transformers. (L3)
C05	conduct experiments as a team / individual by using equipment available in the laboratory
CO6	make an effective report based on experiments

#### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

				0			(	0 /		,	,			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3		3				3				3	3	1
CO2	3			3				3				3	3	1
CO3	3			3				3				3	3	1
CO4	3			3									3	1
CO5					3				3				3	1
CO6										3			3	1

	Syllabus	
Sl No.	Contents	
1	Load characteristics of DC shunt generator.	CO1
2	Load test on DC series generator.	CO5
3	Load test on DC compound generator.	CO6
4	Brake test on DC Compound motor.	CO2
5	Speed control of DC shunt motor by field and armature control.	CO5 CO6
6	Hopkinson's test on D.C shunt machines.	CO3
7	Field's test on D.C series machines.	CO5
8	Separation of losses in DC shunt machine.	CO6
9	Determination of equivalent circuit parameters and voltage regulation using OC and SC tests on single phase transformer.	
10	Load test on single phase transformer.	CO4
11	Parallel operation of two single phase transformers.	CO5
12	Sumpner's test on single phase transformers.	CO6
13	Scott connection of transformers.	
14	Separation of losses in single phase transformer	

**Text Books** 

Electrical Machinery by Dr.P. S Bimbhra, 7/e, Khanna Publishers,2018.
 Electric Machines by I.J. Nagarath and D.P. Kothari,4/e, McGraw Hill, 2010.

Course Code	20808352	Year	II	Semester(s)	Ι
Course Category	Skill oriented	Branch	EEE	Course Type	Skill Oriented Course
Credits	2	L-T-P	1-0-2	Prerequisites	Basic Electrical & Electronics Engineering
Continuous Internal Evaluation:	0	Semester End Evaluation:	50	Total Marks:	50

Г

# ELECTRICAL WORKSHOP

	Course Outcomes											
TTAL	Upon sussessful completion of the course, the student will be able to											
Upon	Upon successful completion of the course, the student will be able to											
CO1	Understand various tools, identify and measure electrical components and											
	quantities.(L2)											
CO2	<b>Demonstrate</b> the wiring of various electrical circuits(L2)											
CO3	Apply software tools for Electrical Circuits analysis (L3)											
CO4	Measurement of illumination from light source (L2)											
CO5	5 Learn various electrical safety measures and First Aid activities (L3)											
CO6	Submit a report based on experiments											

#### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3	3	3	3		3	3		3	3			3	3
CO3	3	3	3	3	3	3	3		3	3			3	3
CO4	2	2	2	2		2	2		2	2			2	2
CO5	3	3	3	3	3	3	3		3	3			3	3
CO6	3				3				3	3				

	Syllabus									
Unit No.	Contents	Mapped								
INO. I	Electrical Wiring & Testing	0								
	Study of various electrical tools and symbols- Identify different types of cables/wires and switches, fuses & fuse carriers -Fundamental of MCB and ELCB, MCCB -Measurement of earth resistance - common faults and trouble shooting of household appliances - Wiring of backup power supply-Calculation of Loads and design of its related components.	CO 1, CO 2, CO 6								
II	<b>Electrical Circuit Design and verification in MATLAB</b> Basic Electrical circuit design with R, RL, RC, Design, Simulate and Verification of KVL, KCL Thevenin's & Norton's theorems in MATLAB/Simulink.	CO 3, CO 6								

III	<b>Illumination</b> Study of Sources of lights- Incandescent lamps, Florescent tubes, Compact Fluorescent lamp, LED lamp, Comparison of Electrical Power consumption.	CO 4, CO 6
IV	<b>Electrical Safety and Precautions</b> Importance of Neutral and Grounding- Precautions from electric shock and methods of First Aid for Electric Shock Treatment - Source of Fire in electrical systems - quenching the fire - Practicing with Fire extinguisher - Working and operation of Extinguisher.	CO 5, CO 6

Ex.No	List of Experiments	Mapped						
		СО						
1	Demonstration of various electrical tools and symbols	CO1,CO 6						
2	Identify different types of cables/wires and switches, fuses & fuse							
	carriers, MCB and ELCB, MCCB with ratings and usage							
3	Measurement of Earth resistance and testing of cables	CO 1,CO 6						
4	Wiring of light/fan circuit using two way control (Staircase wiring	CO 2,CO 6						
5	Wiring of backup power supply including Diesel Generator, inverter	CO 2,CO 6						
	with changeover.							
6	Load calculation for household/Industrial appliances and selection of	CO 2,CO 6						
	related components							
7	Simulation and verification of KVL and KCL law (DC circuits) using	CO 3,CO 6						
	MATLAB.							
8	Response of an RLC circuit by parametric analysis using MATLAB	CO 3,CO 6						
9	Measurement of illumination using Lux meter	CO 4,CO 6						
10	Study of various Electrical safety measures and First Aid for shock	CO 5,CO 6						
	treatment							
11	Understanding the operation of Fire extinguishers and utilization of the	CO 5,CO 6						
	Fire extinguisher							

#### References

#### Learning Resources

- Text Books
  1. J.B.Gubta, "Utilization of Electric Power & Electric Traction", S.K. Kataria & Sons publications, 2013
  - 2. Dr. Shailender Gupta & Bharat Bhushan, "An Insight to Matlab & Simulink", S.k. Kataria publications, 2017
  - 3. A. El-Sharkawi, "Electric Safety:Practice And Standards", T&F India publications, 2020

#### **Reference Books**

- 1. K. B. Raina, "Electrical Design Estimating and Costing", New Age International Private Limited publications, 2017
- 2. Sulaymon Eshkabilov, "Beginning MATLAB and Simulink: From Novice to Professional", Apress publications, 2019

#### e- Resources & other digital material

- 1. https://in.mathworks.com/
- 2. <u>https://www.firstaidforfree.com/fire-safety-advice-first-aiders/</u>

# II B.TECH II SEMESTER SYLLABUS

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20ES1401	Programming with C	3	3	0	0	30	70	100
20BS1401	Electromagnetic Field Theory	3	3	0	0	30	70	100
20EE3401	EE3401 Measurements and Instrumentation		3	0	0	30	70	100
20EE3402	02 Electrical Machines –II		3	0	0	30	70	100
20EE3403	Digital and Analog Circuits	3	3	0	0	30	70	100
20ES1451	Programming with C Lab	1.5	0	0	3	15	35	50
20EE3452	Digital and Analog Circuits Lab	1.5	0	0	3	15	35	50
20EE3451	Electrical Machines –II Lab	1.5	0	0	3	15	35	50
20SO8452	Data Structures	2	1	0	2	0	50	50
20MC1402	Environmental Science	-	2	0	0	-	-	-
Total		21.5	18	0	11			

# II B.Tech., II Semester

L - Lecture T - Tutorial P – Practical

HONORS -I											
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks			
20EE6401A	Battery Management System	4	3	1	0	30	70	100			
20EE6401B	Digital System Design with FPGAs	4	3	1	0	30	70	100			
20EE6401C	Modern Control Systems	4	3	1	0	30	70	100			
20EE6401D	Distributed Generation and Microgrids	4	3	1	0	30	70	100			

L - Lecture T - Tutorial P – Practical

# MINOR COURSES

Course Code	Title	Credits	L	Τ	Р	Continuous Internal	End Semester	Total Marks	Minor in
						Evaluation	Examination		
20CS5401	Computational Thinking	4	4	0	0	30	70	100	CSE
20IT5401	Operating Systems	4	4	0	0	30	70	100	IT
20EC5401	Analog Systems	4	3	1	0	30	70	100	ECE
20EC5402	Microcontrollers and Interfacing	4	3	1	0	30	70	100	IoT
20ME5401	Automobile Engineering	4	3	1	0	30	70	100	Automo bile Engineer ing
20ME5402	Additive Manufacturing	4	3	1	0	30	70	100	Digital Manufac turing
20CE5401A	Solid Mechanics	4	3	1	0	30	70	100	Civil
20CE5401B	Soil Mechanics	4	3	1	0	30	70	100	Civil

L – Lecture T - Tutorial P – Practical

Course Code	20ES1401	Year	II	Semester(s)	Π
Course Category	Engineering Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# **PROGRAMMING** with C

	Course Outcomes									
Upon su	Upon successful completion of the course, the student will be able to									
CO1	<b>Understand</b> the principles of structured programming and C constructs for solving problems. (L2)									
CO2	Apply suitable control constructs and array concepts to solve problems. (L3)									
CO3	<b>Apply</b> the concept of functions, pointers, user defined data types and files to solve problems. (L3)									
CO4	Analyze the given problem and use modular programming approach to develop solutions. (L4)									
CO5	Develop an effective / optimum solution for a given problem and submit a report.									

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3													
CO3	3													
CO4		3												1
CO5									3	3				

Unit No.	Contents	Mapped CO						
	Introduction to C: Introduction, Structure of C Program, A Simple C							
	Program, C-Tokens, Basic Data types, Variables, Constants, Input /	CO1,						
Ι	Output statements, Operators, Type conversion and Type casting.	CO2,						
	Conditional Branching Statements: if, if-else, if-else-if Statements and	CO5						
	Switch case.							
	<b>Iterative Statements:</b> while, do-while and for loops, Nested loops, break							
	and continue statements.	CO1,						
II	Arrays: Declaration, Accessing array elements, Storing values,	CO2,						
	Operations on arrays, Multi-dimensional arrays.	CO5						
	Strings: Introduction, String manipulation functions.							
	Functions: Introduction, Function declaration, Function definition and							
III	Function call, Types of Functions, Parameter passing, Passing arrays to							
	functions, Recursion, Storage classes, Command line arguments.	CO4,						

		CO5					
IV	<ul> <li>Pointers: Declaration and Initialization of pointer variables, Pointer arithmetic, Pointers and arrays, Pointer to pointer, Array of pointers, Pointers and functions, Dynamic memory allocation.</li> <li>Pre-processor directives: The #define Directive, Undefining a Macro, Token Pasting and Stringizing Operators, The #include Directive, Conditional Compilation.</li> </ul>	CO1, CO3, CO5					
V User defined data-types: Introduction, bit-fields, Nested structures, Array of structures, Structures and functions, Unions, enum, typedef. File management in C: Using Files in C, Read data from files, Writing data to files, Random access to files of records.							
Text Book	XS						
<ol> <li>Program</li> <li>Program</li> </ol>	nming in C, Reema Thareja, AICTE Edition, 2018, Oxford University Press. nming in C, by Ashok N.Kamthane, 2 nd Edition, Pearson publications, 2011.						
Reference	s						
<ol> <li>Computer Science: A Structured Programming Approach Using C, B. A. Forouzan and Gilberg, Third Edition, 2007, Cengage Learning.</li> <li>Programming in C, PradipDey, Manas Ghosh, AICTE Edition, Oxford University Press.</li> <li>Programming in ANSI C, 5th Edition by E. Balaguruswamy, McGraw-Hill publications.</li> <li>Programming with C, B. Gottfried, Third Edition, 2017, Schaum's outlines, McGra (India).</li> <li>Problem Solving and Program Design in C, Jeri R. Hanly, Ellot B. Koffman, Fifth J Pearson.</li> </ol>							
e-Resourc	es & other digital material						

1. http://cprogramminglanguage.net/

2. https://www.geeksforgeeks.org/c-programming-language/

3. https://www.greatlearning.in/academy/learn-for-free/courses/c-programming

4. https://www.udemy.com/course/the-complete-c-programming/

5. https://nptel.ac.in/courses/106/105/106105171/

# ELECTROMAGNETIC FIELD THEORY

Course Code	20BS1401	Year	II	Semester(s)	II
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Differential Equation and Vector Calculus (20BS1201)
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks:	100

	Course Outcomes											
Upon successful completion of the course, the student will be able to												
CO1	<b>Understand</b> the concepts on Electrostatics, Magnetostatics and Time varying fields.(L2)											
CO2	<b>Apply</b> basic laws and theorems to determine the electrostatic fields. (L3)											
CO3	Analyze different parameters of static electric fields. (L4)											
CO4	<b>Apply</b> basic Laws to determine the various parameters of Magnetostatic and Time varying fields. (L3)											
CO5	Analyze various parameters of Magnetostatic fields and Time varying fields. (L4)											
CO6	Submit a report in Electrostatic, Magnetostatic fields and Time varying fields.											

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High 2: Medium 1:Low)													
Strength of correlations (5:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	
CO3		2											2	
CO4	3												2	
CO5		3											2	
CO6									3	3			2	

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Static Electric Field – I Coulomb's law, Electric field intensity, Electrical field due to point charges, Line Charges (Derivations Only) – Infinite, Finite and Circular Ring, Surface charges (Derivations Only) – Infinite sheet and Circular Disk. Electric Flux Density, Gauss law and applications of Gauss's Law to Point Charges, Infinite Line Charge, Infinite Sheet of Charge, Co-axial cable, Spherical shell and Uniformly charged sphere. Divergence and Divergence	CO1, CO2, CO3,CO6

	theorem. Maxwell's first law, $div(D) = \rho v$ Energy expended in moving a charge in an electric field, Absolute Electric potential, Potential difference, Calculation of potential difference for point charges, Potential Gradient.	
П	<ul> <li>Static Electric Field – II</li> <li>Poisson's and Laplace's equations, Solution of Laplace equations in one variable</li> <li>Electric dipole, Dipole moment, potential and electric field due to an electric dipole, Torque on an Electric dipole in an electric field. Electrostatic Energy and Energy density.</li> <li>Current and current density, Ohms Law in Point form, Continuity of current equation.</li> <li>Electric field inside dielectric material - concept of Polarization, Boundary conditions between conductor dielectric and two dielectric materials.</li> <li>Capacitance, Capacitance of parallel plate, Spherical, Co-axial capacitors and parallel plates with Composite Dielectric.</li> </ul>	CO1, CO2, CO3,CO6
Ш	<ul> <li>Static Magnetic Fields</li> <li>Biot – Savart's Law, Magnetic Field Intensity (MFI), MFI due to straight current carrying filament, circular, square and solenoid current carrying loops.</li> <li>Magnetic flux and flux density, Maxwell's second Equation, div(B)=0.</li> <li>Ampere circuital Law, Applications of Ampere's circuital law to infinite sheet of current and a long current carrying filament. Point form of Ampere's circuital law, Maxwell's third equation, Curl (H)=J.</li> </ul>	CO1, CO4, CO5, CO6
IV	Magnetic Forces and Inductance Force on a moving charge, Lorentz force equation, Force on a differential current element, Force between differential current elements, Magnetic boundary conditions, Magnetic dipole and dipole moment, a differential current loop as a magnetic dipole, Torque on a current loop placed in a magnetic field Inductances and mutual inductances, determination of self-inductance of a solenoid and toroid and mutual inductance between a straight long wire and a square loop wire in the same plane, energy stored and energy density in a magnetic field.	CO1, CO4, CO5, CO6
V	Time Varying Fields Faraday's laws of electromagnetic induction – its integral and point forms, Maxwell's fourth equation, Curl (E)= $-\partial B/\partial t$ , statically and dynamically induced EMF – simple problems, modification of Maxwell's equations for time varying fields, displacement current, Poynting theorem and Poynting vector.	CO1, CO4, CO5, CO6
	Learning Resources	
Te           1.           2.           Re	<ul> <li>Mathew N. O. Sadiku "Principles of Electromagnetics," Oxford University Press, 6th Edition 2015</li> <li>William H. Hayt, Jr. John A. Buck, <u>M Jaleel Akhtar</u> "Engineering Electromagnetics McGraw-Hill, 9th Edition, 2020</li> <li>Eference Books</li> </ul>	h ",
1. 2.	Ashutosh Pramanik, "Electromagnetism - Theory and Applications", Prentice Hall I 2 nd edition, New Delhi, 2008. Ashutosh Pramanik, "Electromagnetism - Problems with solution", Prentice Hall Inc.	ndia, dia, 2 nd

Edition, 2012.

- 3. John D Kraus, <u>Daniel Fleisch</u> "Electromagnetics with Applications", McGraw Hill, 5th Edition, 2017.
- 4. Nathan Ida, "Engineering Electromagnetics, Springer 2nd Edition, 2005.
- e- Resources & other digital material
  - 1. https://nptel.ac.in/courses/108/106/108106073/#
  - 2. https://ocw.mit.edu/resources/res-6-001-electromagnetic-fields-and-energy-spring-2008/

# MEASUREMENTS AND INSTRUMENTATION

Course Code	20EE3401	Year	II	Semester	II
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basics of Electrical Engineering
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes
Upon s	uccessful completion of the course, the student will be able to
CO1	Understand the basic concepts of measuring instruments. (L2)
CO2	Apply the basic knowledge to determine electrical quantities using various measuring
	instruments and bridges.(L3)
CO3	Apply the basic knowledge to measure physical and electrical quantities using various
	transducers and digital meters (L3)
CO4	Analyze the operation of measuring instruments, DC and AC bridges for measurement
	of electrical Quantities (L4)
CO5	Analyze the operation of transducers and digital meters for measuring physical
	and electrical quantities (L4)
<b>CO6</b>	Submit a report on operation of measuring instruments, instrument transformers,
	transducers, DC and AC bridges.

	Contribution of Course Outcomes towards achievement of Program Outcomes &														
	Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1															
CO2	3												2	1	
CO3	3												2	1	
CO4		3											2	1	
CO5		3											2	1	
CO6									3	3			2	1	

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Classification, deflecting, control and damping torques, Ammeters and	CO1
	Voltmeters, PMMC, moving iron type instruments, expression for deflecting	CO2
	torque and control torque, errors and compensations.	CO4
	Instrument Transformers: Current Transformers and Potential Transformers-	CO6
	theory, ratio error and phase angle error.(only theory no problems)	
II	Single phase dynamometer wattmeter, LPF and UPF, three phase power	CO1
	measurement by two wattmeter method, Single phase induction type energy	CO2
	meter, driving and braking torques. Electrodynamometer and Moving Iron	CO4

	Power Factor meters.	CO6
III	Measurement of resistances using Wheat stone's bridge, Kelvin's double	CO1
	bridge, and megger. Measurement of inductance using Maxwell's bridge,	CO2
	Hay's bridge, Anderson's bridge, Measurement of capacitance using	CO4
	Schering Bridge.	CO6
IV	Classification of transducers, Resistive, Inductive and Capacitive Transducer,	CO1
	Strain Gauge, Thermistors, Thermo couples, Linear Variable Differential	CO3
	Transformers, Piezo electric Transducer.	CO5
		CO6
V	Digital Voltmeters-Successive approximation, ramp and integrating type	CO1
	DVM, Digital frequency meter, Digital multimeter, Digital energy meter,	CO3
	wave analyzer, spectrum analyzer, power analyzer.	CO5
		CO6
	Learning Resources	
Text	Books	
1.	A course in Electrical and Electronic Measurements and Instrumentation by A	.K.
2	Sawinicy, 9th Europhi, Dhanpat Kai & Co. Fublications.	Viddia 5a
۷.	Electrical Weasler Publishing company	v Iuuis, Jth
	Edition, wheeler Fublishing company.	
Refe	rence Books	
1.	Electrical Measurements: Fundamentals, Concepts, Applications by Martin. U.	Reissland,
	New Age International Publishers Limited.	
2.	Electrical and Electronic Measurements by G.K.Banerjee, PHI Learning Private	e Ltd.
e- Re	esources	
1	. https://nptel.ac.in/courses/108/105/108105153/	

# **ELECTRICAL MACHINES-II**

Course Code	20EE3402	Year	II	Semester(s)	II
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	1.Basic Electrical and Electronics Engineering 2.Electrical Machines-I
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks:	100

	Course Outcomes
Upon s	uccessful completion of the course, the student will be able to
CO1	Understand the basic concepts of three phase induction motors, synchronous
	machines single phase motors and special electrical machines. (L2)
CO2	Apply the basic knowledge to obtain the desired parameters and performance
	characteristics of three phase induction motors. (L3)
CO3	Apply the basic knowledge to obtain the desired parameters and performance
	characteristics of synchronous machines, single phase motors and special electrical
	machines. (L3)
CO4	Analyze the concepts of torque equation, testing techniques and speed control methods
	of three phase induction motor (L4)
CO5	Analyze the concepts of synchronous machines, single phase motors and special electrical
	machines. (L4)
CO6	Submit a report in three phase induction motors, synchronous machines, single phase
	motors and special electrical machines.

(	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3												2	1
CO4		3											2	1
CO5		3											2	1
CO6									3	3			2	1

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	<b>Three phase Induction motors:</b> Concept of rotating magnetic field, principle of operation, constructional details of squirrel-cage & slip-ring rotor machines, slip, torque-slip characteristics, maximum torque, equivalent circuit and phasor diagram of induction motor.	CO1 CO2 CO4 CO6

Π	<ul> <li>Testing of three-phase Induction Motor: Losses in three phase induction motor, efficiency, no-load and blocked rotor tests, circle diagram and performance evaluation of induction motor, cogging and crawling.</li> <li>Starting methods of Induction Motors: Necessity of starter, Direct on Line (DOL), star-delta starter, autotransformer starter and Rotor resistance starter.</li> <li>Speed Control of Three-phase Induction Motors: frequency, voltage and rotor resistance control methods, pole changing and cascading of motors.</li> <li>Principle of operation of induction generator.</li> </ul>	CO1 CO2 CO4 CO6
III	Synchronous Generator	
	Constructional Features of wound rotor and salient pole machines, distributed and concentrated windings, distribution, pitch and winding factors, E.M.F Equation. harmonics in generated e.m.f. – suppression of harmonics, Voltage regulation by synchronous impedance method, M.M.F. method and Z.P.F. method, salient pole alternators, determination of Xd and Xq (Slip test), phasor diagrams. Parallel operation of alternators Synchronizing of alternators with infinite bus bars, synchronizing power and torque, parallel operation and load sharing.	CO1 CO3 CO5 CO6
IV	Synchronous Motors – Principle of Operation	CO1
	Theory of operation, phasor diagram, variation of current and power factor with	CO3
	V and inverted V curves, hunting and its suppression, methods of starting.	CO5 CO6
V	Single Phase Induction Motor	
	Classification of single phase induction motors, double revolving field theory – working principle of single phase single winding induction motor – equivalent circuit, no load and blocked rotor tests, spilt phase induction motor, capacitor start motor, capacitor start capacitor run motor, shaded pole motor, ratings and their applications. <b>Special Electrical Machines</b>	CO1 CO3 CO5 CO6
	<b>Principle of Operation:</b> Stepper Motor, Reluctance Motor, Universal Motor, BLDC Motor. (Theoretical Analysis Only)	

**Text Books** 

- 1. Electrical Machinery by Dr. P. S Bimbhra- -7/e -Khanna Publishers, 2018
- 2. Electric Machines by I.J. Nagarath and D.P. Kothari,4/e, McGraw Hill, 2010.

#### **Reference Books**

- 1. Electrical Machines by J.B.Gupta, Kataria publications.
- 2. The Performance and Design of A.C.Machines by M.G.Say, ELBS and Pitman & Sons.
- 3. Electromachanics-III (Synchronous and single phase machines) by S.Kamakashiah, Right Publishers.

e- Resources

https://nptel.ac.in/courses/108/105/108105131/

DIGITAL & ANALOG CIRCUITS					
<b>Course Code</b>	20EE3403	Year	II	Semester	II
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# ANALOG CIDCUIT

#### **Course Outcomes**

Upon successful completion of the course, the student will be able to

**CO1** *Understand* the basic concepts of digital and analog fundamental circuits (L2)

CO2 Apply the basic knowledge of digital fundamentals for implementation in digital applications.(L3)

**CO3***Analyze* different digital circuits for digital applications. (L4)

**CO4** *Develop* various digital and analog circuits using OP-AMP. (L3)

**CO5** *Compare* the performance of various ADC and DAC Circuits using OP-AMP.(L4)

**CO6** *Ability to* do various problems in digital and analog circuits and submit a report.

#### Mapping of course outcomes with Program outcomes(CO/PO/PSO Matrix)

Note:1-Weakcorrelation2-Mediumcorrelation3-Strongcorrelation

*-Average	*-Average value indicates course correlation strength with mapped PO													
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3				3								2	1
CO3		3			3							3	2	1
CO4	3				3							3	2	1
CO5		2			3								2	1
CO6									3	3			2	1

	Syllabus					
Unit No.	Contents	Mapped CO				
Ι	<b>Digital fundamentals:</b> Binary Systems, Boolean Algebra, Minimization of Functions Using Boolean Identities and Karnaugh Map(4,5 Variables),CMOS Logic families	CO1,CO2 CO3 & CO6				
II	<b>Combinational Logic Circuits:</b> Arithmetic Circuits, Code Converters, Decoders. Encoders, Multiplexers, De- Multiplexer, Parity Generators and Checkers	CO1,CO2 CO3 & CO6				
III	<b>Sequential Logic Circuits:</b> Latches and Flip-Flops, Shift-Registers, Counters, Propagation Delay, Setup and Hold Time.	CO1,CO2 CO3 &CO6				

IV	<b>Operational Amplifiers:</b> Review Of Op-Amp, Summing ,Averaging & Differential Amplifiers Differentiators, Integrators, Active filters (LPF,HPF,BPF,BSF), Sinusoidal Oscillators, Schmitt Triggers	CO1,CO4,C 05&CO6
V	<b>Data Converters:</b> Sample and Hold Circuits, DAC & ADC Characteristics, R–2R Ladder DAC, ADC's-Integrating, Successive Approximation, Flash Type, Dual Slope.	CO1,CO4, CO5&CO6

Te	Text Books					
1.	MichaelD.Ciletti, M. Morris Mano, Digital Design, 4/e. Pearson Education, 2007.					
2.	Ramakanth Gayakward, Op-Amps and Linear Integrated Circuits, 4/e, Pearson Education, 2007.					
Re	ference Books					
1	D. Charalleren Der Chail D. Lin, Linnen Laterented Cinerite, New Asy Internetional 2002					

D Choudhury Roy, Shail B. Jain, Linear Integrated Circuits, New Age International, 2003.
 Thomas L Floyd ,Digital Fundamentals, 11th Edition ,Pearson education 2015.

# e-Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit /frame/index.html

#### **PROGRAMMING with C LAB**

Course Code	20ES1451	Year	II	Semester	II
Course Category	Engineering Science	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

Course (	Course Outcomes					
Upon successful completion of the course, the student will be able to						
CO1	Apply Structured Programming/C constructs for solving problems. (L3)					
CO2	Implement programs as an individual on different IDEs/ online platforms. (L3)					
CO3	Develop an effective report based on various programs implemented.					
CO4	Analyze outputs using given constraints/test cases. (L4)					

#### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

				0				U /			,			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3											2		
CO2					3				3					
CO3										3				
CO4		3												

Expt. No.	Contents	Mapped CO
1	Programs on Basics	_
2	Programs on Operators	
3	Programs on Decision Statements	_
4	Programs on Switch operations	
5	Programs on Basic Loop operations	_
6	Programs on Advanced loops	CO1,CO2
7	Programs on 1-D arrays	CO3,CO4
8	Programs on 2-D arrays	_
9	Programs on Strings	-
10	Sample Programs on Function	_
11	Programs on Pointers and Dynamic Memory allocation	
12	Programs on Structures	

#### **Text Books**

1. Reema Thareja, Programming in C, Oxford University Press, AICTE Edition, 2018.

#### **Reference Books**

1. B. A. Forouzan and R. F. Gilberg, Computer Science: A Structured Programming Approach Using C, 3/e, Cengage Learning, 2007.

2. Pradip Dey, Manas Ghosh, Programming in C, Oxford University Press, AICTE Edition,

3. B. Gottfried, Programming with C, 3/e, Schaum's outlines, McGraw Hill (India), 2017.

4. Jeri R. Hanly, Ellot B. Koffman, Problem Solving and Program Design in C, 5/e, Pearson.

# e- Resources & other digital material

1. <u>http://cprogramminglanguage.net/</u>

2. https://nptel.ac.in/courses/106105085/4

# ELECTRICAL MACHINES-II LAB

Course Code	20EE3451	Year	II	Semester(s)	Π
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	Electrical Machines-I Lab
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

	Course Outcomes					
Upon s	uccessful completion of the course, the student will be able to					
CO1	Determine the performance of three phase induction machine (L3)					
CO2	Determine the performance of single phase induction machine and special machines such as three phase schrage motor. (L3)					
CO3	Analyze the performance of the alternator and predetermine the regulation. (L4)					
CO4	Obtain the characteristics and parameters of synchronous machine (L3)					
CO5	Conduct experiments as a team / individual by using equipment available in the laboratory					
CO6	Make an effective report based on experiments					

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

				0				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			3				3				3	3	1
CO2	3			3				3				3	3	1
CO3		3		3				3				3	3	1
CO4	3			3									3	1
CO5					3				3				3	1
CO6										3			3	1

	Syllabus	
Sl No	Contents	
1.	Brake test on three phase Induction Motor	CO1
2.	No-load & Blocked rotor tests on three phase squirrel cage induction motor	CO5
3.	Equivalent circuit of a three phase induction motor.	000
4.	Equivalent circuit of a single phase induction motor.	CO2
5.	Brake test on single phase induction motor	CO5
		CO6
6.	Regulation of a three-phase alternator by synchronous impedance method	CO3
7.	Regulation of a three-phase alternator by mmf method.	CO5
8.	Regulation of a three-phase alternator by Z.P.F. method	CO6

9.	Measurement of sequence impedance of a three-phase alternator	
10.	'V' & ' $\Lambda$ ' curves of a three-phase synchronous motor.	CO4
11.	Determination of Xd and Xq of a salient pole synchronous machine	CO5
		CO6
12.	Brake test on three phase Schrage motor.	CO2
		CO5
		CO6
13.	Determination of performance of induction generator.	CO1
		CO5
		CO6

Text Books

1. Electrical Machinery by Dr.P. S Bimbhra, 7/e, Khanna Publishers, 2018.

2. Electric Machines by I.J. Nagarath and D.P. Kothari,4/e, McGraw Hill, 2010.

# DIGITAL AND ANALOG CIRCUITS LAB

<b>Course Code</b>	20EE3452	Year	II	Semester	II
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	BEEE Lab
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

	Course Outcomes
Upon	successful completion of the course, the student will be able to do either hard ware
/softw	are
<b>CO1</b>	Construct the truth tables of Boolean functions using logic gates (L2)
CO2	Apply the essential information on combinational circuits to check the results of the
	adders, decoders and parity generator. (L3)
CO3	Analyze operation of shift registers, counters and op-amp based differentiator
	and integrator circuits. (L4)
CO4	Analyze operation of arithmetic circuits, filter circuits and Data convertors using Op-
	amp. (L4)
CO5	Conduct experiments as a team / individual by using equipment /software available in
	the laboratory
<b>CO6</b>	Make use an effective report based on experiments.

Μ	[appi1	ng of o	course	e outc	omes	with	Progr	am o	utcon	nes (C	0/ PO	/PSO	Matri	x)
	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
		* - Av	erage	value i	ndicat	es cou	rse cor	relatio	n strei	ngth wi	th map	ped PO	)	
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3		3									3	1
CO2	3			3	3								3	1
CO3		3		3	3								3	1
CO4		3		3									3	1
CO5									3				3	1
CO6										3			3	1

---

	Syllabus	
	Any Ten Experiments(H/W or Simulation)	
Expt. No.	Contents	Mapped CO
Ι	Implementation of Basic gates using Universal Gates.	CO1, CO5,CO6
II	Simplification of the given Boolean functions using K- map and implementation using logic gates	CO1, CO5,CO6
III	Develop and verification of Full adder and Full Subtractor using logic gates	CO2, CO5,CO6
IV	Implementation of the BCD to 7-segmet decoder	CO2, CO5,CO6

V	Implementation of an even parity generator for a 3- bit input	CO2, CO5,CO6
VI	Implement and Verify the operation of a 4-bit Shift Register.	CO3, CO5,CO6
VII	Implement and Verify the operation of 3-bit Ripple Counters using JK-FF.	CO3, CO5,CO6
VIII	Simulate the RC differentiator using Op-Amp	CO3, CO5,CO6
IX	Simulate the RC integrator using Op-Amp	CO3, CO5,CO6
Х	Analyze Adder and Subtractor circuits using Op-Amp	CO4, CO5,CO6
XI	Analyze LPF, HPF filter using Op-Amp.	CO4, CO5,CO6
XII	Construct 4 bit DAC using OP-Amp	CO4, CO5,CO6

___

#### Learning Resources

#### **Text Books**

1. Michael D. Ciletti, M. Morris Mano, Digital Design, 4/e. Pearson Education, 2007

2. Ramakant A. Gayakwad, Op-Amps and Linear Integrated Circuits, Fourth Edition, Pearson 2015

#### **Reference Books**

1. Thomas L Floyd ,Digital Fundamentals , 11th Edition ,Pearson education 2015

2. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2008.

# e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. <u>http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit</u>/frame/index.html

---

# DATA STRUCTURES

Course Code	20SO8452	Year	II	Semester	II
Course Category	Skill Course	Branch	EEE	Course Type	Skill Oriented Course
Credits	2	L-T-P	1-0-2	Prerequisites	С
Continuous Internal Evaluation:	0	Semester End Evaluation:	50	Total Marks:	50

	Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to						
CO1	Apply Structured Programming constructs for solving problems. (L3)						
CO2	Implement programs as an individual on different IDEs/ online platforms.						
CO3	Develop an effective report based on various programs implemented.						
CO4	Analyze outputs using given constraints/test cases. (L4)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Sti	rength	of cor	relatio	ons (3:	High,	2: Me	dium, 1	l: Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												2	
CO2					3				3				2	
CO3										3			2	
CO4		3											2	

	Syllabus						
Unit No	Contents	Mapped CO					
Ι	<ul> <li>Sorting and Searching: Searching; Linear and Binary, Sorting;</li> <li>Bubble, Insertion, Selection, Merge, Quick, Radix</li> <li>Exercise 1</li> <li>Write the programs for the following searching techniques:</li> <li>Linear and Binary.</li> <li>Exercise 2</li> <li>Write the programs for the following sorting techniques:</li> <li>Bubble, Insertion, Quick, and Merge</li> </ul>	CO1,CO2, CO3,CO4					
Π	<ul> <li>STACKS AND QUEUES: Stacks, queues, infix to postfix , evaluating postfix expression. ,</li> <li>Exercise 3 <ul> <li>a) Implementation of stack operations using arrays.</li> <li>b) Implementation of queue operations using arrays.</li> </ul> </li> <li>Exercise 4 <ul> <li>a) Railroad cars numbered are as 0,1,2,,n-1. Each car is brought into the stack and removed at any time. For instance, if n=3, we could move 0, move 1, move 2 and then take the cars out, producing 2,1,0.</li> </ul> </li> </ul>	CO1,CO2, CO3,CO4					

	<ul> <li>Implement application for the given problem.</li> <li>b) Consider a payment counter at which the customer pays for the items purchased. Every time a customer finished paying for their items, he/she leaves the queue from the front. Every time another customer enters the line to wait, they join the end of the line.</li> <li>Implement the application for this problem.</li> <li>Exercise 4- <ul> <li>a) Implementation of infix to postfix conversion</li> <li>b) Implementation of evaluating postfix expression</li> </ul> </li> <li>Linked list: Single linked lists, circularly linked lists, doubly linked lists, Polynomials Representation, adding polynomials, linked stacks</li> </ul>	
ш	<ul> <li>and queues.</li> <li>Exercise 5</li> <li>Implementation of singly linked list</li> <li>Exercise 6</li> <li>Implementation of doubly linked list</li> <li>Exercise 7</li> <li>a) Implement Exercise 4(a) using linked lists.</li> <li>b) Implement Exercise 4(b) using linked lists.</li> <li>Exercise 8</li> <li>A polynomial has the main fields as coefficient, exponent in linked list it will have one more field called link to point to next term in the polynomial. If there are n terms in the polynomial then n such nodes has to be created.</li> </ul>	CO1,CO2, CO3,CO4
IV	Trees: Introduction Terminology, representation of trees, Propertiesof binary trees, binary tree representation, binary tree traversals Inorder, preorder, post order, Binary search trees DefinitionExercise 9Implementation of Binary Search Tree operations	CO1,CO2, CO3,CO4
v	Graphs: Definition, graph representation, elementary graph operations BFS, DFS Exercise 10 Implementation of Graph traversals I) BFSII) DFS	CO1,CO2, CO3,CO4

# Text Books 1. Data Structures and Algorithm Analysis in C – 2nd Edition, Mark Allen Weiss, Pearson

 Data Structures and Algorithms Made Easy by Narasimha Karumanchi, CareerMonk Publications.

#### References

- 1. Introduction to ALGORITHMS 3rd edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, PHI
- 2. Fundamental of Data Structures in C 2nd Edition, Horowitz, Sahani, Anderson-Freed, University Press.
- 3. Classic Data Structures 2nd Edition, Debasis Samantha, PHI.

#### **E-Resources and other Digital Material**

- 1. http://cse.iitkgp.ac.in/pds/
- 2. http://cmpe.emu.edu.tr/bayram/courses/231/LectureNotesSlides/IQBAL/Lecture%20Notes

3. https://www.geeksforgeeks.org/data-structures/

4. https://www.programiz.com/dsa

5.https://www.tutorialspoint.com/data_structures_algorithms/index.htm

6.https://www.youtube.com/watch?v=zWg7U0OEAoE&list=PLBF3763AF2E1C572F

7.https://www.youtube.com/watch?v=S47aSEqm_0I&list=PLgj_V-

ZKxRKrxgFyOutPJpoLFBaQMOpK-

Course 20MC1402 Code		20MC1402	Year	II	Semester	Π			
Cou	rse								
		Mandatory	Branch	EEE	<b>Course Type</b>	Theory			
Categ	gory	course				-			
Cree	dits	0	L-T-P	2-0-0	Prerequisites	Nil			
Contir	nuous		Semester						
Inter	rnal		End						
Evalua	ation:	30	Evaluation:	70 Total Marks		100			
			Course (	Dutcomes					
After su	ccessful	completion of the	course, the stude	ent will be able t	0				
	Apply	advanced solution	ns to measure	the threats and	hazards in enviro	nment to link			
CO1	with hu	man natural syste	ms.(L3)						
	Analyze	e the ethical,cultu	ral and histori	cal interactions	s between man and	d			
CO2 environment.(L4)									
CO3	CO3 Analyze various environmental assets and record for better management(L4)								
CO4	Analyze	e global issues to	design and eva	luate policies()	L4)				
CO5	Apply s	ystem concepts to	o methodologio	cal social and e	nvironmental issu	ies(L3)			

#### **ENVIRONMENTAL SCIENCES**

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Stre	ngth o	of cor	relatio	ons (3	:High	, 2: M	ledium	, 1:Lov	v)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2						2							
CO2		2					3							
CO3		3					3							
CO4	204 2 3													
CO5	2						2							

UNIT	Contents	Manned
NO	contents	COs
Ι	INTRODUCTION TO ENVIRONMENT AND NATURAL RESOURCES Introduction to environment: Definition scope importance need for public awareness. Natural resources: Renewable and non-renewable resources, natural resources and associated problems. Forest resources: Uses, Reasons for over-exploitation, deforestation effects case studies. Water resources: Use and over – utilization of surface and ground water, floods, drought, conflicts over water, dams- benefits and problems. Mineral resources: Uses, environmental effects of extracting and using mineral resources, case studies. Food resources: World food problems, Impacts of overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. Energy resources: Growing energy	CO1 CO2

	needs, use of renewable and non renewable energy sources, case studies.	
	ECOSYSTEMS AND BIODIVERSITY	
	Structure components of ecosystem: Biotic and Abiotic components.	
	Functional components of an ecosystem: Food chains, Food webs,	
	Ecological pyramids, Energy flow in the ecosystem,	
П	Ecological succession. Biogeochemical cycle: Nitrogen, carbon, Phosphorus cycle. Biodiversity: Definition, Levels of biodiversity: genetic, species and ecosystem diversity. Bio-geographical classification of India, Values of biodiversity: consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega – diversity nation. Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife,	CO1 CO2
	man-wildlife conflicts. Conservation of biodiversity: In– situ and Ex-situ	
	CONSErvation of blodiversity.	
	ENVIRONMENTAL POLLUTION AND CONTROL Environmental Pollution: Definition causes effects and control	
Ш	measures: Air Pollution Water pollution Soil pollution Marine	CO3
	pollution Thermal pollution Nuclear hazards Solid waste Management	005
	e-waste Pollution case studies	
	SOCIAL ISSUES AND GLOBAL ENVIRONMENT PROBLEMS	
	AND EFFORTS	
	From Unsustainable to Sustainable development. Urban problems related	
	to energy. Water conservation, rain water harvesting, watershed	CO4
IV	management, Remote sensing and GIS methods. Environmental ethics:	CO5
	Issues and possible solutions. Green building concept, Environmental	
	Impact Assessment Environmental Management Plan, Climate change:	
	global warming, acid rain, ozone layer depletion.	
	HUMAN POPULATION AND ENVIRONMENT LEGISLATION	
	Population growth, Environment and human health. HIV/AIDS, Value	
	Education. Women and Child Welfare. Role of Information Technology	CO4
V	in Environment and human health. Environment Legislation. Air	CO4 CO5
	(Prevention and Control of Pollution) Act. Water (Prevention and Control	005
	of Pollution) Act. Wildlife Protection Act. Forest Conservation Act.	
	Environmental Protection Act.	

**Text Books** 

- 1. Anubha Kaushik and C.P. Kaushik, Text book of environmental studies New Age International Publisher (2014).
- 2. Erach Barucha, Text book of environmental studies for undergraduates courses, published by University Grants Commission, University Press (2005)
- 3. Anindita Basak, Environmental Studies. Pearson (2009)

#### **Reference Books**

- 1. D.K. Asthana and Meera Asthana, A Text book of Environmental Studies, S. Chand (2010).
- 2. P.M Cherry Solid and Hazardous waste Management, CBS Publisher (2016).
- 3. Charles H. Ecclestion, Environmental Impact Assessment, CRC Press (2011).

# BATTERY MANAGEMENT SYSTEM

Course	205564014		ч		Ţ	
Code	20EE6401A	Year	11	Semester(s)		
Course				Course		
Category	Honors	Branch	EEE	Туре	Theory	
Credits	4	L-T-P	3-1-0	Prerequisites		
Continuous		Semester	70		100	
Internal	30	End	/0	Total Marks:	100	
<b>Evaluation:</b>		<b>Evaluation:</b>				

Course Outcomes							
Upon sı	Upon successful completion of the course, the student will be able to						
CO1	Analyse various technical parameters of batteries. (L4)						
CO2	<b>Distinguish</b> between various types of batteries used for EV applications. (L4)						
CO3	<b>Develop</b> battery charger for an EV. (L3)						
CO4	Submit a report on batteries and charging systems.						

Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3						3					3	
CO2		3		3			3						3	
CO3	3		3	3		3						2	3	
CO4									3	3			3	

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
Ι	<b>Battery parameters:</b> Cell and battery voltages, Charge (or Amphour) capacity, Energy stored, Energy density, Specific power, Amphour (or charge) efficiency, Energy efficiency, Self-discharge rates, Battery geometry, Battery temperature, heating and cooling needs, Battery life and number of deep cycles	CO1, CO4
II	<b>EV Batteries:</b> Lead Acid Batteries Lead acid battery basics, Special characteristics of lead acid batteries, Battery life and maintenance, Battery charging, Summary <b>Nickel-based Batteries</b> Introduction, Nickel cadmium, Nickel metal hydride batteries.	CO1, CO2, CO4

III	Sodium, Lithium and Metal air batteries:						
	Sodium-based Batteries	CO1 CO2					
	Introduction, Sodium sulphur batteries, Sodium metal chloride (Zebra) batteries	CO1, CO2,					
	Lithium Batteries						
	Introduction, The lithium polymer battery, The lithium ion battery						
	Metal Air Batteries						
	Introduction, The aluminium air battery, The zinc air battery						
IV	Charging Infrastructure:						
	Domestic Charging Infrastructure, Public Charging Infrastructure, Normal						
	Charging Station, Occasional Charging Station, Fast Charging Station, Battery	$CO_2, CO_4$					
	Swapping Station, Move-and-charge zone.						
V	EV Charging:						
	Battery Chargers: Charge equalisation, Conductive Basic charger circuits,						
	Microprocessor based charger circuit. Arrangement of an off-board conductive						
	charger, Standard power levels of conductive chargers, Inductive (Principle of	005, 004					
	inductive charging, Soft-switching power converter for inductive charging),						
	Battery indication methods						

# Text Books 1. James Larminie Oxford Brookes University, Oxford, UK John Lowry Acenti Designs Ltd., UK, Electric Vehicle Technology Explained.

- 2. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 3. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.

#### **Reference Books**

- 1. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Course Code	20EE6401B	Year	Π	Semester(s)	II
Course Category	Honor	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Digital and Analog Circuits
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# DIGITAL SYSTEM DESIGN WITH FPGAs

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Understand Basic terminologies used in VHDL programming(L2)							
CO2	Apply the various types of modeling using VHDL for digital circuit design(L3)							
CO3	Apply the concept of subprogram and packages in the VHDL programming(L3)							
CO4	Inspect the VHDL design by using testbenches and State machine models (L4)							
CO5	Analyze the FPGA device architecture and the performance of VHDL design. (L4)							
CO6	Submit a report on fundamental of VHDL Programming, modeling, packages and							
	FPGA device architecture							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3												2	1
CO4		3											2	1
CO5		2	2		2		3				3		2	1
CO6									3	3			2	1

SYLLABUS								
Unit	Contents	Mapped						
No.		CO						
Ι	VHDL INTRODUCTION:							
	Introduction, Basic terminology, Entity declaration, Architecture body,							
	Configuration declaration, package declaration, package body, identifiers,							
	data objects, Data types and operators. example programs.	000						
II	MODELLING:							
-----	---------------------------------------------------------------------------------	-------------						
	Behavioral modelling-Architecture body, process statement, Assignment	$CO^{2}$						
	statements, Conditional statements-wait, If, case, loop, null, exit, assertion.	CO2,						
	Data Flow modelling-Concurrent and sequential signal assignment, delta	CO3, CO6						
	delay, multiple drivers, block statement, Structural modelling- component	000						
	declaration, component instantiation, example programs.							
III	SUB PROGRAMS & PACKAGES:	CO3,						
	subprograms- functions, procedures, declarations, subprogram overloading,	CO4,						
	operator overloading, Packages- Package Declarations, Package body.	CO6						
	Example programs.							
IV	SIMULATION AND MODELING:							
	Simulation, Writing a testbench, Modeling-entity interface, delays,	CO4,						
	conditional operations, synchronous logic, state machine modeling,	CO6						
	modelling Moore FSM, modelling mealy FSM.							
V	FIELD PROGRAMMABLE GATE ARRAYS							
	Device selection, XILINX Spartan 6 Family device architecture, FPGA	COF						
	design Flow, Synthesis and its report, Timing analysis, Place and Route,	CO5,						
	Static power dissipation and dynamic power dissipation.	000						

#### **Text Books**

- 1. J.Bhasker, A VHDL Primer, third edition, Pearson, 2015
- 2. Douglas L. Perry, VHDL:Programming by Example,Fourth Edition,McGraw-Hill, 2017
- 3. Steve kilts, Advanced FPGA Design Architecture, Implementation, and optimization, Wiley-IEEE Press, 2007

#### **Reference Books**

1. Debaprasad Das , VHDL: Design, Synthesis and Simulation, World Rights, First Edition, 2018.

#### Web Links

1. https://nptel.ac.in/courses/117108040

#### MODERN CONTROL SYSTEMS

Course Category         Honor         Branch         EEE         Course Type         Theory           Credits         4         L-T-P         3-1-0         Prerequisites         100           Continuous         30         Semester End Evaluation         70         Total Marks         100           Internal Evaluation         Course Outcomes         100         100         100           CO1         Upon successful completion of the course, the student will be able to         CO2         Apply the knowledge of engineering basics to solve problems of various systems (L3)           CO2         Apply the basic principles and techniques in designing of control systems (L3)         CO4         Analyze the linear and nonlinear systems processes that meet the specified needs (L4)           CO5         Ability to understand the concepts of linear and nonlinear control systems and submit a report.         report.         12Low)           CO1         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO1         PO2         1         CO2         1         CO2         2         1         CO3         3         1 <th>Cour</th> <th>seCode</th> <th>20</th> <th>EE64</th> <th>01C</th> <th>Y</th> <th>ear</th> <th></th> <th>II</th> <th></th> <th>Se</th> <th>mester</th> <th>(s)</th> <th>Ι</th> <th>[</th>	Cour	seCode	20	EE64	01C	Y	ear		II		Se	mester	(s)	Ι	[
Category         Image: Credits         4         L-T-P         3-1-0         Prerequisites           Continuous         30         Semester End Evaluation         70         Total Marks         100           Internal Evaluation         Upon successful completion of the course, the student will be able to         100           CO1         Understand various models of linear and nonlinear systems (L2)         20           CO2         Apply the knowledge of engineering basics to solve problems of various systems (L3)         20           CO3         Apply the basic principles and techniques in designing of control systems (L3)         20           CO4         Analyze the linear and nonlinear systems processes that meet the specified needs (L4)         20           CO5         Apply the basic principles and techniques in designing of control systems and submit a report.         1:Low)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO11         PO12         PS01         PS02           CO5         3         1         1         2         1         C03*         2         1           CO4         3         1         1         3         3         2         2         1           CO5         3	Course		Н	onor		Br	anch		EEE		Cours	e Type		The	ory
Continuous         30         Semester End Evaluation         70         Total Marks         100           Evaluation         70         Total Marks         100         100           Evaluation         70         Total Marks         100           Evaluation         70         Total Marks         100           Evaluation         Course Outcomes         100         100           C01         Understand various models of linear and nonlinear systems (L2)         100         100           C02         Apply the knowledge of engineering basics to solve problems of various systems (L3)         100           C03         Apply the basic principles and techniques in designing of control systems and submit a report.         100           C04         Analyze the linear and nonlinear systems processes that meet the specified needs (L4)         11           C05         Ability to understand the concepts of linear and nonlinear control systems and submit a report.         11.Low)           C01         P01         P02         P03         P04         P05         P06         P07         P08         P09         P010         P01         P02         P03         P04         P05         P06         P07         P08         P09         P010         P01         P02         1         1	Cat	egory		1		т	тр		210		Duono	minitor			
Internal         So         Eventset Full         For any set of the se	Cont	innous		$\frac{4}{30}$		L' Semes	mester End 70 Total Marks					10	0		
Evaluation       Course Outcomes         Course Outcomes         Course Outcomes         Course Outcomes         Course Outcomes         Course Outcomes robustomes (L2)         CO2         Apply the knowledge of engineering basics to solve problems of various systems (L3)         CO3         Apply the knowledge of engineering basics to solve problems of various systems (L3)         CO3         Apply the knowledge of engineering basics to solve problems of various systems (L3)         CO4         Analyze the linear and nonlinear systems processes that meet the specified needs (L4)         Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)         POI       PO2       PO3       PO4       PO3       PO6       PO7       PO8       PO9       PO11       PO12       PS01       PS02         Contribution of Course Outcomes         Syllabus       Mapped CO2         Control System Stilly Point PO1       PO1       PO1       PS02       PS02       PS02       PS02       PS02       PS02       PS01       PS02       PS02	Int	ernal		50		Eval	uatio	n	10		10141	1 <b>1121 N</b> 5		10	.0
Course Outcomes           Upon successful completion of the course, the student will be able to           COI         Understand various models of linear and nonlinear systems (L2)           CO2         Apply the knowledge of engineering basics to solve problems of various systems (L3)           CO3         Apply the basic principles and techniques in designing of control systems (L4)           CO4         Analyze the linear and nonlinear systems processes that meet the specified needs (L4)           CO5         Ability to understand the concepts of linear and nonlinear control systems and submit a report.           Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)           P01         P02         P03         P04         P05         P06         P07         P08         P09         P011         P012         PS01         PS02           CO1         1         1           CO1         1         2         1           Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)           P01         P02         P03         P03	Eval	uation													
Coll         Understand         various models of linear and nonlinear systems (L2)           CO2         Apply the knowledge of engineering basics to solve problems of various systems (L3)           CO3         Apply the basic principles and techniques in designing of control systems (L3)           CO4         Analyze the linear and nonlinear systems processes that meet the specified needs (L4)           CO5         Ability to understand the concepts of linear and nonlinear control systems and submit a report.           CO1         Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO1         PO12         PS01         PS02           CO1         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         <	Course Outcomes														
Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspa	CO1 Understand various models of linear and nonlinear systems (L2)														
CO2       Apply the knowledge of engineering basics to solve problems of various systems (L3)         CO3       Apply the basic principles and techniques in designing of control systems (L3)         CO4       Analyze the linear and nonlinear systems processes that meet the specified needs (L4)         Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)         Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)         Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS02         CO1       1       2       1       2       1       2       1         CO3       3       1       1       2       1       2       1         CO4       3       1       1       2       1       2       1         CO5       3       1       1       2       1       2       1         CO4       3       1       1       3       3       <			ty the		lodge	of and	incori	incui				$\frac{113}{2}$	-)	watama	(1.2)
COS Apprive basic principles and techniques in designing of control systems (L3)         CO4       Analyze the linear and nonlinear systems processes that meet the specified needs (L4)         CO4       Analyze the linear and nonlinear systems processes that meet the specified needs (L4)         Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)         P01       P02       P03       P04       P05       P06       P07       P08       P09       P010       P011       P012       PS01       PS02         CO1       1       2       1         Co1       2       1         CO1       Syllabus       Mapped         CO1       Syllabus	C02	App	ly the	hasia	nring		nd too	hnja	$\frac{1}{100}$ in (		ing of a	antrol o		$(\mathbf{I} 2)$	(L3)
Cota       Analyze the linear and nonlinear systems processes that need the specified needs (1.4)         Cots       Ability to understand the concepts of linear and nonlinear control systems and submit a report.         Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)         POI       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS02         Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS02         CO1       1       1       CO2       3       1       1         CO4       3       1       1       2       1         CO4       3       1       3       2       1         CO4       3       1       3       1		App		Dasic		ipies a				lesign			systems	(L3)	
Ability to understand the concepts of ninear and nonlinear control systems and submit a report.         Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO11       PO12       PS01       PS02         CO1       Image: CO2       Image: CO3       Image: CO2       Image: CO2       Image: CO2       Image: CO2       Image: CO3       Image: CO2       Image: CO2       Image: CO2       Image: CO2       Image: CO2       Image: CO2       Image: CO3       Image: CO2       Image: CO2       Image: CO2       Image: CO3       Image: CO3       Image: CO							mear	syste	ms pro			et the sp		needs (1	L4)
Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)         POI       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS02         CO1       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS02         CO2       3       1       1       2       1       2       1         CO3       3       1       1       2       1       2       1         CO4       3       1       1       2       1       2       1         CO5       3       1       1       2       1       2       1         CO5       3       2       2       2       1         Unit       Syllabus       Mapped CO's       CO1.       CO2.       CO1.       CO1.       CO2.         I intro       State Space Analysis of Systems: Eigen-values, Eigen Vectors and a Canonical form of state model-Jordan Canonical form, Diagonal Canonical form.       CO2.       CO2.         Controllabel Canonical and Observable canonical form of State	COS	repo	ity to	under	stand	the co	ncepts	S OT I	near ai	nd nor	ilinear c	control	systems	s and su	bmit a
Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PSO1       PSO2         CO1       Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colsp		repo	Conti	ributi	on of	Cours	e Out	tcom	es towa	ards a	chiever	nent of	Progr	am	
1:Low)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS02         CO1       1       1       1       1       1       2       1         CO2       3       1       1       1       2       1         CO3       3       1       1       1       2       1         CO4       3       1       1       2       1       2       1         CO4       3       1       1       2       1       2       1         CO5       3       3       2       2       1       2       1         Unit       Syllabus       Syllabus       Mapped       CO3;       CO4,       CO4,       CO4,         No.       State Space Analysis of Systems: Eigen-values, Eigen Vectors and a Canonical form.       CO2,       CO4,       CO4, <t< td=""><td></td><td></td><td></td><td></td><td>Ou</td><td>tcome</td><td>s &amp;St</td><td>reng</td><td>th of c</td><td>orrela</td><td>ations (3</td><td>3:High,</td><td>2: Med</td><td>lium,</td><td></td></t<>					Ou	tcome	s &St	reng	th of c	orrela	ations (3	3:High,	2: Med	lium,	
CO1       PO2       PO3       P		DO1	DO2	DO2	DO	DO5	DOC	DO		:Low	) 	DO11	DO12	DCO1	DSO2
CO2       3       1       1       2       1         CO3       3       1       1       2       1         CO4       3       1       1       2       1         CO5       3       1       1       2       1         CO5       3       1       3       2       2         Syllabus         Mapped CO's         Syllabus         Mapped CO's         State Space Analysis of Systems: Eigen-values, Eigen Vectors and a Canonical form. CO2, CO1, CO2, CO3, form of state model-Jordan Canonical form, Diagonal Canonical form. CO2, CO4, CO4, co5         Ontrollable Canonical and Observable canonical form of State Model. State space model representation for nonlinear systems.         2       Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerma's formula).       CO1, CO2, CO3, CO4, CO5         3       Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for Co1, co2, co3, non-linearities.       CO4, CO5         4       Instability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyapunov second method. Generation of Lyapunov functions – Variabl	CO1	POI	PO2	P05	PO4	POS	PU0	PU	PU8	P09	P010	PUII	POIZ	P501	P302
CO3       3       1       1       1       2       1         CO4       3       1       3       2       1         CO5       3       1       3       3       2       2         Syllabus         Mapped CO's         Controllable Canonical and Observable canonical form, Diagonal Canonical form, CO2, CO4, CO2, CO4, CO2, CO4, CO4, CO5         Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).       CO4, CO5         On Linear Systems: Introduction – Characteristics of non linear systems - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities – common physical non-linearities.       CO1, CO2, CO4, CO2, CO3, CO4, CO5         Stability Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, CO5         Stabili	CO2	3			1							1		2	1
CO4       3       1       3       2       1         CO5       3       3       2       2         Syllabus         Unit No.         Syllabus       Mapped CO's         Other Systems: Eigen-values, Eigen Vectors and a Canonical form of state model-Jordan Canonical form, Diagonal Canonical form. Controllable Canonical and Observable canonical form of State Model. State space model representation for nonlinear systems.       CO1, CO4, CO4, CO5         Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).       CO1, CO2, CO3, CO4, CO5         Non Linear Systems: Introduction – Characteristics of non linear systems - – Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non- linearities – common physical non-linearities. Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO5, non-linearities.       CO1, CO2, CO3, CO4, CO5         Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyanunoy second method. Generation of Lyapunoy functions – Variable gradient       CO1, CO2, CO3, CO4	CO3	3			1		1							2	1
COS       3       3       2       2         Syllabus         Unit No.         Syllabus         Mapped CO's         Syllabus         Mapped CO's         State Space Analysis of Systems: Eigen-values, Eigen Vectors and a Canonical form of state model-Jordan Canonical form, Diagonal Canonical form. Controllable Canonical and Observable canonical form of State Model. State space model representation for nonlinear systems.       CO4, CO5         2       Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).       CO1, CO2, CO3, CO4, CO5         3       Non Linear Systems: Introduction – Characteristics of non linear systems - – Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non- linearities – common physical non-linearities.       CO1, CO2, CO3, CO4,         3       Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO5       CO4,         4       Instability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyanunoy second method. Generation of Lyapunoy functions – Variable gradient       CO4,	CO4		3	2	1					-				2	1
Unit No.         Syllabus         Mapped CO's           1         State Space Analysis of Systems: Eigen-values, Eigen Vectors and a Canonical form of state model-Jordan Canonical form, Diagonal Canonical form. Controllable Canonical and Observable canonical form of State Model. State space model representation for nonlinear systems.         CO2, CO4, CO5           2         Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).         CO4, CO5           3         Non Linear Systems: Introduction – Characteristics of non linear systems - – Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non- linearities – common physical non-linearities. Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, CO5         CO4, CO5           4         Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyapunov second method. Generation of Lyapunov functions – Variable gradient         CO1, CO2, CO3	CO5			3				Syl	labus	3	3		Z	2	
No.       CO's         1       State Space Analysis of Systems: Eigen-values, Eigen Vectors and a Canonical CO1, form of state model-Jordan Canonical form, Diagonal Canonical form. CO2, Controllable Canonical and Observable canonical form of State Model. State CO4, space model representation for nonlinear systems.       CO4, CO5         2       Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).       CO1, CO2, CO3, CO4, CO5         3       Non Linear Systems: Introduction – Characteristics of non linear systems - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, CO5, CO4, CO5         3       Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Locy, Lyapunoy second method. Generation of Lyapunoy functions – Variable gradient       CO4, CO5	Unit						S	Syllał							Mapped
1State Space Analysis of Systems: Eigen-values, Eigen Vectors and a Canonical form of state model-Jordan Canonical form, Diagonal Canonical form. Controllable Canonical and Observable canonical form of State Model. State space model representation for nonlinear systems.CO2, CO4, CO52Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).CO1, CO2, CO3, CO4, CO53Non Linear Systems: Introduction – Characteristics of non linear systems - – Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non- linearities – common physical non-linearities. Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, CO5CO4, CO2, CO3, CO4, CO2,4Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyapunoy second method. Generation of Lyapunoy functions – Variable gradientCO4, CO2, CO4	No.						~	, <u>j</u> 1140	••••						CO's
1       form of state model-Jordan Canonical form, Diagonal Canonical form.       CO2,         1       Controllable Canonical and Observable canonical form of State Model. State space model representation for nonlinear systems.       CO4,         2       Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).       CO1,         3       Non Linear Systems: Introduction – Characteristics of non linear systems - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities.       CO1,         3       Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for Constructing Trajectories, singular points. Describing function analysis for typical non-linearities.       CO4,         4       Instability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by CO2,       CO2,         4       Instability theorems - Stability Analysis of the Linear time invariant systems by CO2,       CO2,		State	Space	Anal	ysis (	of Syst	ems:	Eige	n-value	s, Eig	en Vect	ors and	l a Can	onical	CO1,
2       Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).       CO1, CO2, CO3, CO3, CO4, CO5         3       Non Linear Systems: Introduction – Characteristics of non linear systems - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities.       CO1, CO2, CO3, CO3, CO4, CO5         3       Non Linear Systems: Introduction – Characteristics of non linear systems - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities.       CO4, CO5         3       Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, CO5       CO4, CO5         4       Instability theorems - Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by CO2, Lyapunov second method. Generation of Lyapunov functions – Variable gradient       CO4	1	form Contro	of st	tate r	node	l-Jorda	n Ca Obser	nonia	canor	rm, I	Jiagona	I Cano State I	onical Model	form. State	CO2, CO4
2       Design of Control System in State Space: Effect of state feedback on controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).       CO1, CO2, CO3, CO4, CO3, CO4, CO5         3       Non Linear Systems: Introduction – Characteristics of non linear systems - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities.       CO1, CO2, CO3, CO4, CO5         3       Non Linear Systems: Introduction – Characteristics of non linear systems - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities.       CO1, CO2, CO3, CO4, CO5         3       Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, CO5       CO4, CO5         4       Instability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyapunov second method. Generation of Lyapunov functions – Variable gradient       CO4, CO5		space	model	repre	senta	tion fo	r nonl	inear	systen	18.		State	viouei.	State	CO4, CO5
<ul> <li>2 controllability and observability, Principle of duality. Controller design via pole placement by state feedback (Ackerman's formula). Full order observers (Ackerman's formula).</li> <li>3 Non Linear Systems: Introduction – Characteristics of non linear systems - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities – common physical non-linearities.</li> <li>3 Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO2, CO3, CO4, CO5</li> <li>4 Instability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyapunov second method. Generation of Lyapunov functions – Variable gradient CO4</li> </ul>		Dociar	of	Contr	• <b>0</b> ] 6	vetom	in (	State	Snac	o. Et	fect of	stata	feedba	nck on	CO1,
<ul> <li>² placement by state feedback (Ackerman's formula). Full order observers (CO3, CO4, CO5</li> <li>Non Linear Systems: Introduction – Characteristics of non linear systems -         <ul> <li>Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities – common physical non-linearities.</li> </ul> </li> <li>³ Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, CO5, CO4, CO5</li> <li>Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by CO2, Lyapunov second method. Generation of Lyapunov functions – Variable gradient</li> <li>CO4</li> </ul>		control	labilit	tv and	obse	ervabili	itv. Pı	rincir	le of d	<b>c.</b> Li luality	. Contr	oller de	esign v	ia pole	CO2,
(Ackerman's formula).       CO4, CO5         Non Linear Systems: Introduction – Characteristics of non linear systems - – Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non- linearities – common physical non-linearities.       CO1, CO2, CO2,         Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for Constructing Trajectories, singular points. Describing function analysis for typical non-linearities.       CO4, CO5         Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyapunov second method. Generation of Lyapunov functions – Variable gradient       CO4	2	placem	ent l	by sta	ate f	eedbac	k (A	cker	nan's	form	ula). F	ull or	ler ob	servers	CO3,
Non Linear Systems: Introduction – Characteristics of non linear systems -         - Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-         1         1         1         1         2         1         2         3         1         3         3         1         1         1         1         1         1         1         2         1         2         3         1         3         3         3         4         1         4         1         1         1         2         2         2         3         3         3         3         3         4         4         4         5         5         5         4         6         6         6		(Acker	man's	s form	ula).										CO4, CO5
<ul> <li>⁻ Limit cycles –frequency entrainment– Jump Phenomenon. Classification of non-linearities – common physical non-linearities.</li> <li>³ Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, Constructing Trajectories, singular points. Describing function analysis for typical non-linearities.</li> <li>Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by CO2, Lyapunov second method. Generation of Lyapunov functions – Variable gradient CO4</li> </ul>		Non Li	near	Syster	ns: Ir	ntroduc	tion -	- Cha	racteris	stics o	f non lii	near sys	stems -		
<ul> <li>³ Intearities – common physical non-linearities.</li> <li>³ Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for CO4, Constructing Trajectories, singular points. Describing function analysis for typical cO5 non-linearities.</li> <li>Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by CO2, Lyapunov second method. Generation of Lyapunov functions – Variable gradient CO4</li> </ul>		– Limi	t cycl	es –fr	equen	cy ent	rainme	ent– .	lump F	henor	nenon.	Classifi	cation of	of non-	CO1,
<ul> <li>Constructing Trajectories, singular points. Describing function analysis for typical cO5 non-linearities.</li> <li>Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by CO2, Lyapunov second method. Generation of Lyapunov functions – Variable gradient. CO4</li> </ul>	3  Integrities - common physical non-linearities. Analysis of nonlinear systems: phase-plane analysis - Method of Isoclines for									CO2, CO4					
non-linearities.Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and instability theorems - Stability Analysis of the Linear time invariant systems by Lyapunov second method. Generation of Lyapunov functions - Variable gradientCO1, CO2, CO4		Constr	ucting	g Traje	ctori	es, sing	gular p	points	5. Desc	ribing	functio	n analy	vsis for	typical	CO5
<ul> <li>Stability Analysis: Stability in the sense of Lyapunov, Lyapunov's stability and</li> <li>instability theorems - Stability Analysis of the Linear time invariant systems by</li> <li>Lyapunov second method. Generation of Lyapunov functions – Variable gradient</li> </ul>		non-lir	eariti	es.							-				<i></i>
4 Instability method Generation of Lyapunov functions – Variable gradient $CO4$	1	Stabili	ty An	alysis	: Stat	oility ir	1 the s	sense	of Lya	apuno Lineer	v, Lyapı	unov's	stability	and by	CO1,
A = A = A = A = A = A = A = A = A = A =	4	Lyanur	ny m nov se	cond r	s - S netho	d . Gei	Anar	ysis ( on of	Lvanii	Linear	nctions	ivariant – Varia	ble gra	dient	CO2, CO4.

	and Krasovoskii's method (descriptive treatment only).	CO5							
		CO1,							
	<b>Linear System Design:</b> Lag, lead, lag-lead compensators – physical realization,								
5	5 design of compensators using bode plots (construction steps only), and design of								
	PID Controllers in frequency domain.	CO4,							
		CO5							
	Learning Resources								
Te	ext Books								
1.	Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall of India Pvt. Ltd., 5 ^t	^h edition,							
	2013.								
2.	M.Gopal, "Modern Control System Theory", New Age International Pvt. Ltd., 2 nd ed	lition,							
	2005.								
Re	ference Books								
1.	Farid Golnaraghi and Benjamin C. Kuo, "Automatic Control Systems", John wiley a	nd son's.							
	9 th edition, 2010.								
2.	A. Nagoor Kani, "Advanced Control Theory", CBS Publishers, 3 rd edition, 2020.								
3.	D. Roy Choudhury, "Modern Control Engineering", Prentice Hall of India Pvt. Ltd.,	9 th							
	edition, 2015.								
e- 1	Resources & other digital material								
1.	https://nptel.ac.in/courses/107106081								
2.	https://nptel.ac.in/courses/108107115								
3.	3. https://www.youtube.com/watch?v=Xgnwn0G9qoo&list=PLhdVEDm7SZMqSUpBw78Cb2BmI142R								

2VA

#### DISTRIBUTED GENERATION AND MICROGRIDS

Course Code	20EE6401D	Year	II	Semester(s)	Π
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon su	Upon successful completion of the course, the student will be able to							
CO1	Understand Distributed generation and Microgrid concepts. (L2)							
CO2	<b>Interpret</b> DG Vs Central power generation, various DG technologies and energy storage systems. (L3)							
CO3	Analyze Impact of DG integration on power quality and reliability. (L4)							
CO4	Analyze various control aspects of Microgrids. (L4)							
CO5	<b>Interpret</b> micro grid configuration, various operational & Protection issues for Microgrids and Microgrid economics (L3)							
CO6	Ability to engage in independent study to make an effective presentation and <b>submit a report</b> on various concepts in Distributed Generation and Micro Grids.							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1														
CO2	3						1						2	2
CO3		2					2						2	2
CO4		2				1							2	2
C05	2					1							2	2
C06	3	3							3	3			2	2

SYLLABUS								
Unit	Contents	Mapped						
No.		CO						
Ι	Introduction to Distributed Generation & Microgrids							
	Distributed generation, Distributed Generation versus Central Station	CO 1						
	Generation, Active distribution network, Concept of Microgrid, A typical	CO 1 CO 2						
	Microgrid configuration, Interconnection of Microgrids, Technical and	CO 5						
	economical advantages of Microgrid, Management and operational issues	CO 6						
	of a Microgrid.							

II	Distributed energy resources	
	Introduction, Combined Heat & Power (CHP) systems - IC engines, stirling	CO 1
	engines, micro turbines, fuel cells, Wind energy conversion systems	CO 2
	(WECS), Solar photovoltaic (PV) systems, Small-scale hydroelectric power	<b>CO 6</b>
	generation, Energy storage – Battery storage, capacitor storage, flywheels	
III	Impact of DG integration on power quality and reliability	
	Introduction, Power quality disturbances, Power quality sensitive	CO 1
	customers, Existing power quality improvement technologies, Impact of DG	CO 3 CO 6
	integration, Issues of premium power in DG integration	
IV	Microgrid and active distribution network management system	
	Network management needs of Microgrid - Microsource generation control,	
	Domestic process control, Energy storage, Regulation and load shifting,	CO 1
	Ancillary services. Microsource controller, Central controller - Energy	CO 4
	manager module (EMM), Protection co-ordination module (PCM),	
	information needed for central controller Operation, Control strategies for central controller design	
V	Protection issues for Microgrids and its economics	
v	Islanding: separation from utility. Major protection issues of stand alone	60.1
	Microgrid Main issues of Microgrid aconomics. Microgrids and traditional	
	norman austam accompanies. Emergina economics, Microgrids and traditional	CO 6
	power system economics, Emerging economic issues in Microgrids,	
	Heonomic issues between Microgrids and bulk nower systems	

# Text Books S. Chowdhury, S.P. Chowdhury and P. Crossley, "Microgrids and Active Distribution Networks", The Institution of Engineering and Technology, 2009. H. Lee Willis, Walter G. Scott, "Distributed Power Generation – Planning and Evaluation", Marcel Decker Press, 2000. Reference Books Nikos Hatziargyriou, 'Microgrids: Architectures and Control' (Wiley - IEEE), 2014. Papia Ray, Monalisa Biswal, 'Microgrid: Operation, Control, Monitoring and Protection', Springer, 1st edition, 2020

e-resources:

- 1. https://nptel.ac.in/courses/108108034
- 2. https://nptel.ac.in/courses/108107143

#### COMPUTATIONAL THINKING

Course Code	20CS5401	Year	II	Semester(s)	II
Course Category	Minor in CSE	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to								
CO1	<b>Understand</b> the fundamental concepts of searching, sorting and data processing over numerical and textual data. (L2)								
CO2	<b>Apply</b> the knowledge of fundamental algorithms and factoring methods tomodel a flowchart for a given problem. (L3)								
CO3	<b>Apply</b> the concepts of data processing techniques to develop algorithms for a given problem. (L3)								
CO4	Analyze the given problem to develop an efficient solution using sortingor pattern searching techniques. (L4)								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Str	rength	of co	rrelat	ions (.	3:Higl	h, 2: N	Aedium,	<b>1:Low</b>	)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												1	1
CO2	3												2	2
CO3	3												2	2
CO4			3						3	3			2	2

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
Ι	<b>Introduction to computational thinking :</b> What is computational thinking, Pillars of computational thinking - Decomposition, Pattern Recognition, Data Representation and Abstraction, Algorithm Design. Introduction to Algorithms and Flowcharts, Fundamental Algorithms: Exchanging the values of two variables, Counting, Summation of a set of numbers, Factorial Computation, Generation of Fibonacci sequence, Reversing the digits of an integer	CO1, CO2

Π	<b>Factoring Methods</b> : Finding the square root of a number, smallest divisor of an integer, Greatest common divisor of two integers, Generating prime numbers, Computing Prime Factors of an integer, generation of pseudo random numbers, raising a number to a large power, computing nth Fibonacci number.	CO1, CO2
III	<b>Array Techniques</b> : Array order reversal, Array counting or Histogramming, finding the maximum number in a set, removal of duplicates from an ordered array, partitioning an array, finding the kth smallest element.	CO1, CO3
IV	Merging, Sorting and Searching: The two-way merge, sorting by selection, sorting by exchange, sorting by Insertion, Linear search, binary search.	CO1, CO3, CO4
V	<b>Text Processing and Pattern Searching</b> : Keyword searching in text,Text line editing, Linear pattern search, Sub linear pattern search.	CO1, CO3, CO4

1. How to Solve it by Computer, R.G. Dromey, First Edition, Pearson, 2006.

#### **Reference Books**

**Text Books** 

1. Fundamentals of Computers, Reema Thareja, Oxford University Press.

- 2. Flowchart and Algorithm Basics: The Art of Programming, A B Chaudhuri,2020, Mercury Learning and Information.
- 3. Algorithms Unlocked, Thomas H. Cormen, 2013, The MIT Press.
- 4. An Introduction to Programming and Problem Solving with Pascal, Michael Schneider, Steven W. Weingart, David M. Perlman, Second Edition, 2011, WileyIndia

#### e-resources:

- 1. https://onlinecourses.swayam2.ac.in/nou20_cs03/preview
- 2. <u>https://www.coursera.org/learn/problem-solving?#about</u>
- 3. https://www.udemy.com/course/flowchartingcourse/
- 4. https://raptor.martincarlisle.com/

#### **OPERATING SYSTEMS**

Course Code	20IT5401	Year	II	Semester(s)	II
Course Category	Minor in IT	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes
Upon su	accessful completion of the course, the student will be able to
CO1	Understand the structure and functionalities of operating systems. (L2)
CO2	Apply various concepts to solve problems related to process synchronization, deadlocks and make an effective report. (L3)
CO3	Apply different algorithms of CPU scheduling, Page replacement and disk scheduling. (L3)
CO4	Analyze process, memory and storage management strategies. (L4)

(	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2			3											
CO3		3											3	
CO4		3												

	SYLLABUS					
Unit	Contents	Mapped				
No.		СО				
Ι	<b>Overview: Introduction</b> : What Operating Systems Do, Computer- System Organization, Computer-System Architecture, Operating- System Operations <b>Operating System Structures:</b> Operating-System Services, User and Operating-System Interface, System Calls, Types of System Calls.	CO1				
II	ProcessManagement:ProcessConcept,ProcessScheduling,Operations on Processes, InterprocessCommunication.Threads:Overview, Multicore Programming, Multithreading Models.ProcessScheduling:BasicConcepts,Scheduling Criteria,SchedulingAlgorithms (First-Come,First-ServedScheduling,Shortest-Job-FirstScheduling,ProcessScheduling,PriorityScheduling,Round-RobinScheduling.)	CO1, CO3, CO4				

-		
III	<b>Process Synchronization:</b> Background, The Critical-Section Problem, Peterson's	
	Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic	
	Problems of Synchronization.	CO1
	Deadlocks: System Model, Deadlock Characterization, Methods for	$CO^2$
	Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock	002
	Detection, Recovery from Deadlock.	
IV	Memory Management:	
	Main Memory: Background, Swapping, Contiguous Memory Allocation,	
	Segmentation, Paging, Structure of the Page Table	001
	Virtual Memory: Background, Demand Paging, Copy-on-Write, Page	
	Replacement, Basic Page Replacement, FIFO Page Replacement, Optimal Page	CO3,
	Replacement, LRU Page Replacement, LRU-	C04
	Approximation Page Replacement.	
V	Storage Management:	CO1,
	File-System Interface: File Concept, Access Methods, Directory and Disk	CO3,
	Structure.	CO4
	File-System Implementation: File-System Structure, File-System	
	Implementation, Directory Implementation, Allocation Methods.	
	Mass-Storage Structure: Overview of Mass-Storage Structure, Disk Structure,	
	Disk Attachment, Disk Scheduling, FCFS Scheduling, SSTF Scheduling, SCAN	
	Scheduling, C-SCAN Scheduling, LOOK	
	Scheduling, Selection of a Disk-Scheduling Algorithm.	

## Text Books 1. Operating System Concepts, Abraham Silberchatz, Peter Baer Galvin, Greg Gagne, Ninth Edition, 2016, Wiley India. Reference Books

- 1. Operating Systems Internal and Design Principles, William Stallings, Ninth Edition, 2018, Pearson.
- 2. Operating Systems Harvey M.Deitel, Paul J Deitel and David R.Choffnes , Third Edition, 2019, Pearson..
- 3. Operating Systems A Concept based Approach- D.M. Dhamdhere, Second Edition, 2010, McGraw Hill.

e-resources:

- 1. https://www.youtube.com/watch?v=z3Nw5o9dS7Q&list=PLsylUObW5M3CAGT6OdubyH6FztK fJCcFB
- 2. http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC51_4pouojjtd4

#### ANALOG SYSTEMS

Course Code	20EC5401	Year	II	Semester(s)	П
Course Category	Minor in ECE	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes
Upon su	uccessful completion of the course, the student will be able to
CO1	Understand the basic concepts of electronic devices & analog systems (L2)
CO2	Apply the knowledge of transistors to realize switch, amplifier, linear and non- linear applications of op-amp (L3)
CO3	Apply the knowledge of op-amps & IC 555 timer to implement active filters, data converters & Multivibrators (L3)
CO4	Analyse the op-amp and 555 IC Timer based circuits to solve the given problem or to justify the given situation (L4)

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2				
CO2	2								2	2				
CO3	3								3	3				
CO4		3							3	3				3

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
Ι	Introduction to Electronic devices :	
	PN diode-Construction, forward bias, reverse bias, V-I characteristics.BJT-	
	Construction (NPN), CE characteristics, BJT as switch and amplifier.	CO1,
	Advantages of FET over BJT, FET classification, MOSFET- Construction	CO2
	(N-channel Enhancement type )	
II	Operational Amplifiers :	
	Block diagram, Ideal characteristics, practical characteristics for IC 741 op-	CO1,
	amp, Linear applications- Inverting amplifier, Non Inverting amplifier,	CO2,
	Adder, subtractor. non-linear applications- Comparator,	CO4
	Astable Multivibrator, Monostable Multivibrator	

III	Active Filters:	CO1,
	Introduction, classification, Butter worth filters – 1 st order, 2 nd orderLPF,	CO3,
	HPF, Band pass, Band reject filters, All pass filters.	CO4
IV	D/ A & A/ D Converters:	CO1,
	Specifications, weighted resistor DAC, R2R ladder DAC, inverted R- 2R	СОЗ,
	DAC, parallel comparator type ADC, counter type ADC, successive	CO4
	approximation ADC and dual slope ADC.	
V	IC 555 TIMER:	CO1,
	Introduction to 555 timer, functional diagram, Monostable, Astable	СОЗ,
	operations and applications, Schmitt Trigger.	CO4

Text Books
1. Ramakanth A. Gayakwad- Op-Amps and Linear Integrated Circuits, - PHI, 4 th Ed., 2009
2. J.Milliman, C.C Halkias - Electronic Devices and Circuits, Tata Mc-Graw Hill, 2 nd Ed.
2007
Reference Books

- 1. D Roy Choudhury, Shail B. Jain, Linear Integrated Circuits, New Age International, 2003
- 2. J.Milliman, C.C Halkias- Integrated Electronics, Tata Mc-Graw Hill, 2nd Edition,
- 2007

e-resources:

- 1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-012microelectronic-devices-and-circuits-fall-2009/lecture-notes/
- 2. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-20/
- 3. https://nptel.ac.in/courses/108105158
- 4. https://nptel.ac.in/courses/108108111

Course Code	20EC5402	Year	II	Semester(s)	Π
Course Category	Minor in IoT	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

#### MICROCONTROLLERS AND INTERFACING

	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	Summarize programmer's model of 8051 microcontroller. (L2)							
CO2	Apply knowledge and demonstrate programming proficiency using the various addressing modes and instructions of the microcontroller. (L3)							
CO3	Effectively utilize peripherals such as interrupts, timers, and serial communications to develop microcontroller based systems. (L3)							
CO4	Develop programs to interface various peripherals with microcontroller. (L3)							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2			2	2
CO2	2					2				2			2	2
CO3	3					3				3			3	3
CO4	2					2				2			2	2

SYLLABUS						
Unit	Contents	Mapped				
No.		CO				
Ι	8051 Microcontroller					
	Microcontrollers, Types of Microcontrollers, 8051 Microcontroller	CO1				
	Architecture, Microcontroller 8051 Pins, 8051 Ports, Internal and External	COI				
	Memory.					
II	8051 Instruction Set					
	Addressing Modes, Data Transfer instructions, Arithmetic instructions,	$CO^{2}$				
	Logical instructions, Branch instructions, Bit manipulation instructions.	02				
	Simple Assembly language programs.					
III	Real Time control: Interrupts	CO3				
	Routine, Interrupt and Interrupt service routine, Interrupt Handling					
	structure of an MCU, Sources of interrupts, Enabling or disabling of					
	the sources, interrupt structure in 8051.					
IV	Real Time control: Timers and Serial Port					
	Programmable timers in the MCUs, Timer modes, Free running counter	CO3				
	and real time control, Software timers, Serial Communication modes.	05				

V 8051 Interfacing Applications								
LCD interfacing, Keyboard interfacing, ADC interfacing, DAC interfacing, Stepper motor interfacing and their 8051 Assembly language								
programming.								
Learning Resources								

#### **Text Books**

- 1. Raj Kamal-Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd Ed., Pearson.
- Muhammad Ali Mazidi, Janice Gillespie Mazidi and Rollin D. McKinlay- The 8051 Microcontroller and Embedded Systems using assembly and C", Pearson, 2nd Ed. **Reference Books**

1. Kenneth J. Ayala- The 8051 Microcontroller, 3rd Ed., Thomson/Cengage Learning.

Course Code	20ME5401	Year	II	Semester(s)	П
Course Category	Minor in Automobile Engineering	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

#### **AUTOMOBILE ENGINEERING**

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Understand basic components of an Automobile. (L2)					
CO2	Analyse the working of various systems of engines. (L3)					
CO3	Analyse the working of various automobile systems. (L3)					
CO4	Analyse various alternative energy resources, emissionsstandards and application of plastic in automobiles. (L3)					

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1									1	3	1
CO2	3	1	1									1	3	1
CO3	3	1	1									1	3	1
CO4	3	1	1				2					1	3	1

	SYLLABUS						
Unit	Contents	Mapped					
No.		CO					
I	<b>INTRODUCTION</b> Components of four-wheeler automobile – chassis and body – power unit –power transmission – rear wheel drive, front wheel drive, 4-wheel drive. Types of automobile engines, engine construction, turbo charging and super charging – engine lubrication, splash and pressure lubrication systems, oil filters, oil pumps – crank case ventilation –engine service, reboring, decarburization, Nitriding of crank shaft. <b>INTRODUCTION TO NHV:</b> Definition of Noise, Vibrations & Harshness in reference to Vehicular application.	CO1, CO2					
П	<ul> <li>FUEL SYSTEM</li> <li>S.I. Engine: Fuel supply systems, Mechanical and electrical fuel pump – filters–carburetor – types – air filters – petrol injection.</li> <li>C.I. Engines: Requirements of diesel injection systems, types of injection systems, fuel pump, nozzle, spray formation, injection timing, testing of fuel pumps.</li> <li>COOLING SYSTEM: Cooling Requirements, Air Cooling, Liquid Cooling, Thermosyphon, Forced Circulation System, evaporating cooling and pressure sealed cooling – antifreeze solutions.</li> </ul>	CO1, CO2					

	<b>IGNITION SYSTEM:</b> Ignition System-, battery, magneto, Electronic	
	ignition	
III	<ul> <li>TRANSMISSION SYSTEM:</li> <li>Clutches: Principle, types, cone clutch, single plate clutch, multi plate clutch, magnetic and centrifugal clutches, fluid fly wheel.</li> <li>Gear boxes, types, sliding mesh, construct mesh, synchro mesh gear boxes, epicyclic gear box, over drive torque converter.</li> <li>Propeller shaft – Hotch – Kiss drive, Torque tube drive, universal joint, differential rear axles – types – wheels and tyres.</li> <li>SUSPENSION SYSTEM: Objects of suspension systems – rigid axle suspension system, torsion bar, shock absorber, Independent suspension system.</li> </ul>	CO1, CO3
IV	<b>STEERING SYSTEM:</b> Steering geometry – camber, castor, king pin rake, combined angle toe-in, center point steering. Types of steering mechanism – Ackerman steering mechanism, Davis steering mechanism, steering gears – types, steering linkages. <b>BRAKING SYSTEM:</b> Mechanical brake system, Hydraulic brake system, Master cylinder, wheel cylinder, tandem master cylinder, Requirement of brake fluid, Pneumatic and vacuum brakes.	CO1, CO3
V	<ul> <li>ELECTRICAL SYSTEM: Charging circuit, generator, current – voltage regulator – starting system, bendix drive mechanism solenoid switch, lighting systems, Horn, wiper, fuel gauge – oil pressure gauge, engine temperature indicator etc.</li> <li>EMISSION FROM AUTOMOBILES: Pollution standards National and international – Pollution Control– Techniques – Multipoint fuel injection for SI Engines. Common rail diesel injection. Energy alternatives – Solar, Photo-voltaic, hydrogen, Biomass, alcohols, LPG,CNG, liquid Fuels and gaseous fuels, electrical-their merits and demerits.</li> <li>KEY AUTOMOTIVE PLASTICS APPLICATIONS: Safety and Energy Management, Interiors and Occupant Safety. Glazing, Plastic-Metal Hybrid Structures, Headlamps, Body Panels, Under-the-Hood Components.</li> </ul>	CO1, CO3, CO4

Text Books
1. Automotive Mechanics-Vol.1 & Vol.2, by Kirpal sing, Standard Publishers, New
Delhi, 2008.
2. Automobile Engineering, (3rd edition), by William crouse, TMH Distributors, New
Delhi.
3. Plastics Application Technology for Safe and Lightweight Automobiles, Sudhakar R
Marur, SAEInternational (30 October 2013), USA
Reference Books
1. Automobile Engineering Theory and Servicing, by James D. Halderman and Chase D.
Mitchell, Pearson education inc, 2001.
2. Automobile Engineering, by Newton's steeds & Garrett Automotive Mechanics
Heitner, Butterworth International, London.
E- Resources & other digital material
1.https://nptel.ac.in/courses/107/106/107106088/

Course Code	20ME5402	Year	II	Semester(s)	II
Course Category	Minor in Digital Manufacturing	Branch	EEE	Course Type	Basic Manufacturing Processes
Credits	4	L-T-P	3-1-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

#### **ADDITIVE MANUFACTURING**

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Understand the working principle and process parameters of different AM processes						
	and Design and develop aproduct for AM process. (L2)						
CO2	Explore the Vat Photo polymerization AM Process and their applications. (L2)						
CO3	Select the Extrusion-Based AM Processes, Sheet Lamination AM Processes						
	suitable material and process for fabricating a given product. (L2)						
CO4	Identify various Metal Additive Manufacturing processfor different products.						
	(L2)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Str	rength	of co	rrelat	ions (.	3:Hig	h, 2: N	Aedium,	1:Low	)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		1		2							2		
CO2	3		1		2							2		
CO3	3		1		2							2		
CO4	3		1		2							2		

SYLLABUS				
Unit	Contents	Mapped		
No.		CO		
Ι	<b>Introduction to Additive Manufacturing</b> : Introduction to AM, AM evolution, Distinction between AM & CNC machining, Steps in AM, Classification of AM processes, Advantages of AM and Types of materials for AM	CO1		
Π	<b>Vat Photopolymerization AM Processes</b> : Stereolithography (SL), Materials, Process Modeling, SL resin curing process, SL scan patterns, Micro-stereolithography, Mask Projection Processes, Two-Photon vat photo polymerization, Process Benefits and Drawbacks, Applications of Vat Photopolymerization, case studies.	CO1, CO2		
III	<b>Material Jetting AM Processes:</b> Evolution of Printing as an Additive Manufacturing Process, Materials, Process Benefits and Drawbacks, Applications of Material Jetting Processes. Binder Jetting AM Processes: Materials, Process Benefits and Drawbacks,	CO1, CO3		
	Research achievements in printing deposition, Technical challenges in printing, Applications of Binder Jetting Processes.			

IV	<b>Extrusion-Based AM Processes:</b> Fused Deposition Modelling (FDM), Principles, Materials, Process Modelling, Plotting and path control, Bio- Extrusion, Contour Crafting, Process Benefits and Drawbacks, Applications of Extrusion-Based Processes, case studies <b>Sheet Lamination AM Processes:</b> Bonding Mechanisms, Materials, Laminated Object Manufacturing (LOM), Ultrasonic Consolidation (UC), Gluing, Thermal bonding, LOM and UC applications, case studies.	CO1, CO4
v	<b>Powder Bed Fusion AM Processes:</b> Selective laser Sintering (SLS), Materials, Powder fusion mechanism and powder handling, Process Modelling, SLS Metal and ceramic part creation, Electron Beam melting (EBM), Process Benefits and Drawbacks, Applications of Powder Bed Fusion Processes.	CO1, CO4

	8					
Tex	Text Books					
1.	Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing					
	Technologies: 3DPrinting, Rapid Prototyping, and Direct Digital Manufacturing", 2nd					
	Edition, Springer, 2015.					
2.	Patri K. Venuvinod and Weiyin Ma, "Rapid Prototyping: Laser-based and Other					
	Technologies", Springer, 2004.					
2						

3. Chua Chee Kai, Leong Kah Fai, "3D Printing and Additive Manufacturing: Principles & Applications", 4th Edition, World Scientific, 2015.

#### **Reference Books**

1. Neil Hopkinson, Richard Hague, Philip Dickens - Rapid manufacturing_ an industrial revolution for the digital age (2006, Wiley) - libgen.lc.

#### E- Resources & other digital material

1. <u>https://onlinecourses.nptel.ac.in/noc20_me50/preview</u>

2. <u>https://onlinecourses.nptel.ac.in/noc21_me115/preview</u>

Course Code	20CE5401A	Year	II	Semester(s)	Π
Course Category	Minor in Civil Engineering	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

#### SOLID MECHANICS

	Course Outcomes						
Upon su	accessful completion of the course, the student will be able to						
CO1	<b>Determine</b> the resultant of coplanar force system and <b>analyse</b> the force system which were involved Friction. (L4)						
CO2	Find out the center of gravity and moment of inertia and their applications. (L3)						
CO3	<b>Evaluate</b> the behavior when a solid material is subjected to various types of forces and <b>estimate</b> stresses, corresponding strain developed. (L3)						
CO4	<b>Estimate</b> the forces developed and draw schematic diagram for shear forces, bending moments for simple beams with different types of support and are subjected to various types of loads. (L3)						
CO5	<b>Evaluate</b> the flexural stresses, section modulus for various sections and draw shear stress distribution for rectangular, circular, triangular, I, T and angle sections (L5)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Str	ength	of co	rrelat	ions (.	3:Hig	h, 2: N	<b>Iedium</b> ,	1:Low	)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	3						3	2	3
CO2	2	2	2	2	2	3						3	2	3
CO3	3	3	3	3	3	3						3	3	3
CO4	2	2	2	2	2	3						3	2	3
CO5	2	2	2	2	2	2						2	2	2

SYLLABUS				
Unit	Contents	Mapped		
No.		СО		
Ι	ANALYSIS OF FORCE SYSTEMS Concept of idealization, force, a system of forces, superposition, transmissibility, Resolution, and composition of forces, Law of Parallelogram of forces, polygonal law, Resultant of concurrent coplanar force system, coplanar non-concurrent force system, a moment of forces, couple, Varignons theorem, resultant of coplanar non-concurrent force system, free body diagram, Lamis theorem, equations of equilibrium, equilibrium of concurrent and non-concurrent coplanar force system <b>FRICTION</b> Types of friction, laws of friction, limiting friction, coefficient of friction concept of static and dynamic friction, numerical problems on impending motion on horizontal and inclined planes along with connected bodies,	CO1		

п	<ul> <li>CENTROID</li> <li>Introduction, methods of determining the centroid, locating the centroid of simple figures from first principle, the centroid of composite and built-up sections.</li> <li>MOMENT OF INERTIA</li> <li>Introduction, method of determining the second moment of area of plane sections from first principles, parallel axis theorem and perpendicular axis theorem section modulus, the radius of gyration, moment of inertia of composite area and built-up sections, concept of product of inertia (No problem).</li> </ul>	CO2				
ш	<b>SIMPLE STRESSES AND ELASTIC CONSTANTS</b> Concept of stress and strain, St. Venant's principle, stress and strain diagram, Elasticity and plasticity, types of stresses and strains, Hooke's law stress –strain diagram for mild steel working stress, factor of safety, Lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them; Bars of varying section, composite bars, temperature stresses. Relationship between elastic constants. Strain Energy –Resilience, Gradual, sudden, impact and shock loadings, simple applications.	CO3				
IV	<b>BENDING MOMENT AND SHEAR FORCE DIAGRAMS</b> Relationship between moment, shear and load. Bending Moment (BM) and Shear Force (SF) diagrams. BM and SF diagrams for cantilevers, simply supported with or without overhangs. Calculation of maximum BM and SF and the point of contra flexure under concentrated loads, uniformly distributed loads over the whole span or part of span, combination of concentrated loads (two or three) and uniformly distributed loads, uniformly varying loads, application of moments	CO4				
V	<b>STRESSES IN BEAMS</b> Derivation of bending equation, Neutral axis, determination of bending stresses, section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections, Design of simple beam sections. Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T angle sections.	CO4				
	Learning Resources					
Text	Text Books					

 A. K. Tayal, Engineering Mechanics (Statics and Dynamics), UmeshPublications, 14th Edition, 2011.
 V.N Vazirani and M.M Ratwani, Analysis Of Structures Vol-I, KhannaPublishers, 2003.

- 3. S.Timoshenko, Strength Of Materials: Elementary Theory and Problems-Vol.I,2004.
- 4. R.Subrahmanian, Strength of Materials, 3/e, Oxford University Press, 2016.

#### **Reference Books**

- 1. S.S. Rattan, Strength of Materials, 2/e, Tata McGraw Hill Education, 2011.
- 2. Gere and Timoshenko, Mechanics of Materials, 4/e, CBS Publishers, 2006.
- 3. Stephen Timoshenko, Strength of Materials, 3/e, CBS Publisher, 2002.
- 4. R.K. Rajput, Strength of Materials, S. Chand Publications, 2007

#### E- Resources & other digital material

- 1. http://nptel.ac.in/courses.php
- 2. http://jntuk-coeerd.in/

Course Code	20CE5401B	Year	II	Semester(s)	Π
Course Category	Minor in Civil Engineering	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	20BS1304-
					Applied
					Mechanics
Continuous	•	Semester	-0		100
Internal	30	End	70	Total	100
Evaluation:		Evaluation:		Marks:	

#### SOIL MECHANICS

	Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to						
CO1	<b>Classify</b> the soil based on particle-size characteristics, liquid limit, and plasticity						
	index. (L2)						
CO2	Select the clay and sandy soil for liner and filter (porous media) application						
	based on theirhydraulic behavior (L2)						
CO3	<b>Evaluate</b> the settlement behavior of the soil under the application of stress (L5)						
CO4	<b>Calculate</b> the factor of safety and ultimate stress for any geotechnical structure (L3)						
CO5	Evaluate the shear strength parameters for field conditions (L5)						

#### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

							(	. 0	, .	· · · · · · · · · · · · · · · · · · ·	,	,		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	2	2					2	3	2
CO2	2	2	2	2	2	2	2					2	2	2
CO3	3	3	3	3	3	3	3					3	2	3
CO4	2	2	2	2	2	2	2					2	3	2
CO5	2	2	2	2	2	3	3					3	2	3

	SYLLABUS					
Unit	Contents	Mapped				
No.		CO				
Ι	<ul> <li>Soil classification: Soil formation; Introduction to soil classification;</li> <li>Particle size classification as per IS-code; Unified soil classification system; Indian standard soil classification system,</li> <li>Clay Chemistry: Primary minerals; Secondary minerals, Basic structure of clay mineral, Electrical charges on clay Adsorbed water, specific surface area, Diffuse double layer.</li> <li>Atterberg Limits: Shrinkage limit, Plasticity Chart, Block Diagram, Simple definitions; some important relationships.</li> </ul>	CO1				
Π	<b>Hydraulic behaviour:</b> Fundamentals of fluid flow, Bernoulli's Equation, Laminar flow, Turbulent flow, Darcy's law and its Validity, Determination of coefficient of permeability constant and Variable head methods, Factors affecting permeability; Permeability of stratified soil deposits. <b>Seepage in soil:</b> Continuity Equation (3D and 2D), Properties of flow net, construction of flow net, use of flow net, Flow net in Anidtropic soil	CO2				

	-	
III	<b>Compaction:</b> Mechanism of compaction, factors affecting compaction, effect of compaction on engineering properties of soils <b>Consolidation:</b> Oedometer Tests, e-p and e-log p curves – compression index, coefficient of compressibility and coefficient of volume change, Terzaghi's assumptions for one dimensional consolidation, equation and application, coefficient of consolidation, degree of consolidation vs time, initial compression, primary compression and secondary compression, normally consolidated, over consolidated and under consolidated clayey deposits,	CO3
IV	<ul> <li>Analysis of Stress-strain: stress-strain behaviour of soils, Principal Stresses, State of stress, Definition and notation of stress, equations of equilibrium in differential form, stress components on an arbitrary plane, equality of cross shear, stress invariants, principal stresses, octahedral stress, planes of maximum shear, stress transformation, Theories of failure.</li> <li>Analysis of Strain: Strains in term of displacement field, engineering shear strains, strain invariants, principal strains, octahedral strains, plane state of strain, compatibility equations, strain transformation.</li> </ul>	CO4
V	<b>Shear Strength of Soils:</b> Elastic and plastic deformations; Interpretation of triaxial test results; Significance of pore pressure parameters; Concept of drained and undrained loading; Unconsolidated undrained triaxial test; Consolidated undrained triaxial test; Consolidated drained triaxial test (CD); Direct shear test; Consolidated drained direct shear test on clay and sand; Shear strength of cohesive and cohesion less soils; Drained and Undrained shear strength of soils, Mohr circle of stress, Mohr-coulomb's failure theory; Determination of shear strength;. Stress path; Drained and Undrained stress path; Stress path with respect to different initial state of the soil; Effect of dilation in sands.	CO5

### Text Books 1. B.C. Punmia, Soil Mechanics and Foundations, (SI Modules), 16/e LaxmiPublications, Sixteenth edition (2017).

- 2. Gopala Ranjan and A.S.R, Rao, Basic and Applied Soil Mechanics, 2/e,New Age International Publishers, Third edition 2016.
- 3. Dr. K. R Arora, Soil Mechanics and Foundation Engineering, StandardPublisher Dist, 2009.

#### **Reference Books**

- 1. C. Venkataramaiah, Geotechnical Engineering, New Age International, 2006.
- 2. M. Braja Das, Principles of Geotechnical Engineering, Cengage Learning, 2013.
- 3. P. Donald, Coduto, Geotechnical Engineering, Prentice-Hall India, 2010.

#### E- Resources & other digital material

- 1. <u>https://nptel.ac.in/courses/105/101/105101201/</u>
- 2. http://jntuk-coeerd.in/

## III B.TECH I SEMESTER SYLLABUS

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE3501	Control Systems	3	3	0	0	30	70	100
20EE3502	Power Electronics	3	3	0	0	30	70	100
20EE3503	Electrical Power Generation, Transmission and Distribution	3	3	0	0	30	70	100
	Open Elective -I	3	3	0	0	30	70	100
20EE4501	Professional Elective-I	3	3	0	0	30	70	100
20EE3551	Control Systems Lab	1.5	0	0	3	15	35	50
20EE3552	Power Electronics Lab	1.5	0	0	3	15	35	50
20SA8552	JAVA Programming	1.5	1	0	2	-	50	50
20MC1502	Universal Human Values	0	2	0	0	30	70	100
20EE3581A	Summer Internship	1.5	0	0	0	-	-	-
Total		21.5	18	0	8			

III B.Tech., I Semester

L - Lecture T - Tutorial P – Practical

	Professional Elective-I							
Course Code	Title	Cre dits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE4501A	Utilization of Electrical Energy	3	3	0	0	30	70	100
20EE4501B	Electrical Machine Design	3	3	0	0	30	70	100
20EE4501C	Renewable Energy Resources	3	3	0	0	30	70	100
20EE4501D	High Voltage Engineering	3	3	0	0	30	70	100
20EE4501E	Computer Organization & Architecture	3	3	0	0	30	70	100

L - Lecture T - Tutorial P – Practical

	<b>Open Elective -I</b>							
Course Code	Title	Cre dits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20CE2501A	Air Pollution and Control	3	3	0	0	30	70	100
20EC2501A	Sensor Technology	3	3	0	0	30	70	100
20EC2501B	Electronic Instrumentation	3	3	0	0	30	70	100
20EE2501A	Electrical Safety	3	3	0	0	30	70	100
20IT2501A	Cyber Laws	3	3	0	0	30	70	100
20ME2501A	Design Thinking	3	3	0	0	30	70	100
20ME2501B	Logistic and Supply Chain Management	3	3	0	0	30	70	100

L - Lecture T - Tutorial P – Practical

	HONORS -II							
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE6501A	Computer Aided Power Systems Analysis	4	3	1	0	30	70	100
20EE6501B	Reactive Power Control in Electric Systems	4	3	1	0	30	70	100
20EE6501C	Power Systems Dynamics and Control	4	3	1	0	30	70	100
20EE6501D	EHVAC Transmission	4	3	1	0	30	70	100

 $L-Lecture \ T \ - \ Tutorial \qquad P-Practical$ 

#### MINOR COURSES

Course Code	Title	Credits	L	Τ	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks	Minor in
20CS5501	Data Structure and Algorithms using Java	3	3	0	0	30	70	100	CSE
20CS5551	Data Structure and Algorithms using Java Lab	1	0	0	2	15	35	50	CSE
20IT5501	Computer Networks	4	4	0	0	30	70	100	IT
20EC5501	Digital Design Using Verilog HDL	4	3	1	0	30	70	100	ECE
20EC5502	Sensors and Actuator Devices for IoT	4	3	1	0	30	70	100	ІоТ
20ME5501	Automotive Transmission System	4	3	1	0	30	70	100	Automo bile Engineer ing
20ME5502	Basic manufacturing processes	4	3	1	0	30	70	100	Digital Manufac turing
20CE5501A	Analysis of Structures	4	3	1	0	30	70	100	Civil
20CE5501B	Transportation Engineering	4	3	1	0	30	70	100	Civil

L - Lecture T - Tutorial P – Practical

#### CONTROL SYSTEMS

0	Course Code20EE3501YearIIISemesterI									[				
Cours	e Cat	egory	Pro	fession Core	nal	Bra	nch	E	EEE	Cour	se Ty	pe	The	ory
C	Credit	s		3		L-T	<b>-P</b>	3	-0-0	Prere	equisit	tes Sig	nals an	d Systems
Col In Eva	ntinuo nterna aluati	ous al ion		30		Semest Evalu	er End ation	1	70	Tota	l Mar	ks	10	00
						Co	urse O	utcor	nes	•		ľ		
Upon :	succes	ssful c	omple	etion o	of the	course,	the stu	ident '	will be	e able to	)			
CO1	Und	erstar	nd var	ious n	nodel	s to repr	esent t	he lin	ear tin	ne inva	riant s	ystem	s. (L2)	
CO2	Appl trans	ly the ferfun	knov ction/s	vledge state sp	of e	ngineeri	ing fui stems a	ndame and cl	entals naracte	in cont rize the	rol sy em. ( <b>L</b>	stems, <b>/3</b> )	modeli	ing
CO3	Inter	rpret	the L7	[] syst	em's	perform	ance in	n time	and fi	requenc	ey don	nains.	(L3)	
CO4	Anal tools (L4)	yze th	e tran	sfer fu	inctio	on mode	l of lin	iear co	ontrol s	system	and sta	ability	using v	arious
CO5	Exar	nine t	he sta	te of a	linea	r control	system	n using	g state s	space re	present	tation.	(L4)	
CO6	Abili and,s	i <b>ty</b> to submit	under t a rep	stand ort.	the c	oncepts	, inves	stigate	e vario	ous prol	olems	of co	ntrol sy	stems
Con	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (3:High, 2: Medium, 1:Low)													
001	PO1	PO2	PO3	PO4	POS	5 PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2					1							2	1
$CO_2$	3					1							$\frac{2}{2}$	1
C04	5	3	1	1									2	1
CO5		3	1	1							1		2	1
C06		U	3	-					3	3	-	2	2	-
			I										I	
Unit No.							Sylla	bus						Mapped CO's
1	INO.       Mathematical Modelling of Control Systems: Classification of control systems, Mathematical models – mechanical systems (Translational and Control and Control systems), Concept of transfer function - Finding Transfer functions for clectrical networks and mechanical systems. Effects of feedback.							ol nd CO1, or CO2, CO4, CO6						
<ul> <li>Transfer function representation: Transfer function of DC servo motor – AC servo motor. Construction and working of synchro transmitter and receiver.</li> <li>Block diagram algebra - reduction techniques, representation by signal flow graph – reduction using mason's gain formula.</li> </ul>						C er. CO1, w CO2, CO4, CO6								
3	3 Time Response Analysis (descriptive treatment only): Step response of first order, second order systems, time domain specifications, steady state error and static error constants. Stability Analysis:							s, CO1, CO3,						

	The concept of stability - Routh's stability criterion -limitations of Routh's	CO4,
	stability, Root locus concept – construction of root loci (simple problems).	CO6
	Frequency Response Analysis & Stability:	CO1,
4	Introduction, frequency domain specifications (descriptive treatment only).	CO3,
4	Stability analysis of Bode plots - Phase margin a Gain margin (simple	CO4,
	problems).	CO6
	State Space Analysis of LTI Systems: Concepts of state, state variables and	
	state model, Conversion of state variable model to transfer function model and	COL
5	transfer function form to state variable form (controllable canonical form),	CO1
5	solution of linear homogenous state equations - state transition matrix (Laplace	CO2
	transform method) and its properties, Kalman's test of controllability and	CO6
	observability.	000
Learn	ning Resources	
Text	Books	
1.	Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall of India Pvt. I	$_{td.}, 5^{th}$
	edition, 2010.	
2.	I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age Internation	onal (P)
	Limited 6 th edition, 2009.	
Refe	rence Books	
1.	A. Nagoor Kani, "Control Systems", RBA Publications, 3 rd edition, 2017.	
2.	Farid Golnaraghi and Benjamin C. Kuo, "Automatic Control Systems", John wi	ley and
	son's., 9 th edition, 2010.	
3	S Palani "Control Systems Engineering" Tata Mc Graw Hill Publications 2 nd	edition

3. S.Palani, "Control Systems Engineering", Tata Mc Graw Hill Publications, 2nd edition, 2009.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108106098
- 2. https://nptel.ac.in/courses/108107115

3. https://freevideolectures.com/course/2337/control-engineering

#### **POWER ELECTRONICS**

Course Code	20EE3502	Year	III	Semester(s)	Ι
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	<ol> <li>Circuit Theory</li> <li>Electronic</li> <li>Devices and</li> <li>Amplifier Circuits</li> </ol>
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	<b>Understand</b> the basic operation of various power electronic devices and their characteristics, Various Power Converters, firing scheme, Snubber circuit, series and parallel connections of SCR. (L2)					
CO2	<b>Apply</b> the basic knowledge to obtain the operation, waveforms and desired parameters of Two-Transistor analogy and characteristics of SCR, , Necessity of series and parallel connections of SCR, Rectifiers and Choppers.(L3)					
CO3	<b>Apply</b> the basic knowledge to obtain the operation, waveforms and desired parameters of Snubber circuit ,Inverters and AC to AC converters. (L3)					
CO4	<b>Analyze</b> the concepts of Two-Transistor analogy and characteristics of SCR, Necessity of series and parallel connections of SCR ,load voltage- current expressions for Rectifiers and Choppers (L4)					
CO5	<b>Analyze</b> the concepts Snubber circuit ,load voltage-current expressions for Inverters and AC to AC converters. (L4)					
CO6	<b>Submit a report</b> in Power Semiconductor Switches, Rectifiers, Choppers, Inverters and AC to AC converters.					

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1	1						2	2
CO3	3					1	1						2	2
CO4		2											2	2
CO5		3											2	2
CO6						3	3		3	3		3	2	2

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	Power Semiconductor Switches:	CO1
	Power Diode, Power MOSFET, Power IGBT, DIAC Principle of operation	CO2
	and characteristics. Principle of operation of SCR, static, dynamic	CO3
	characteristics, Two-Transistor analogy of SCR, Triggering methods of SCR,	CO4
	gate driver circuit with IGBT & MOSFET, Snubber Circuit, Necessity of	CO5
	series and parallel connections of SCR.	CO6
II	AC –DC Converters(Rectifiers):	~ ~ .
	Phase angle control, single phase half wave and full wave(mid point)	CO1
	controlled rectifiers with R and RL load, half controlled (symmetrical	CO2
	configuration) and fully controlled bridge rectifiers with R, RL loads - effect	CO4
	of source inductance. I hree phase half and fully controlled bridge converters-	C06
ш	With K and KL loads, Single phase dual converters.	
ш	<b>DU to AU Converters (Inverters):</b> Series Inverter and Parallel Inverter	
	single phase run onlige inverters, comparison between $vSI \ll CSI$ , three phase VSI (180, $k_1^{20}$ ) degree conduction modes). Introduction to $M_{12}^{11}$	CO1
	phase vol (100 & 120-degree conduction modes). Introduction to Multi level Inverters Cascaded H Bridge inverter (principle of operation). Voltage	CO3
	control techniques for inverters: Pulse-width modulation techniques single	CO5
	nulse multi-nulse sinusoidal nulse width modulation	CO6
	techniques( <b>descriptive treatment only</b> ).	
IV	DC to DC Converters (Choppers) – Control strategies of chopper, Buck,	CO1
	Boost, Buck-boost choppers- Derivation of average load voltage and current	CO2
	expressions, Filter design(derivation only), Four quadrant chopper	CO4
	(principle of operation).	CO6
V	AC to AC converters (AC Voltage controllers and Cyclo-converters) :	CO1
	Two SCR's in anti-parallel with R and RL loads, derivation of RMS load	CO3
	voltage, current and power factor. Cyclo converters – single phase mid-point	CO5
	and bridge type cyclo-converters with resistive and inductive load	CO6
	(Principle of operation only ).	
	Learning Resources	
rext	<b>BOOKS</b> D.S. Dhimhen (Demor Electronics), Khonne Dehlictions, 5 th ditis, 2010	
1.	P.S.Bhimbra, PowerElectronics', Khanna Publications, 5 th edition, 2018.	4 th
2.	M.H. Rashid, 'Power Electronic Circuits Devices and Applications', Pearson,	4
	cultion, 2017.	
Refe	rence Books	
1.	M.D.Singh and K.B.Kanchandani, 'PowerElectronics', McGraw Hill Publication	ons, 2 nd
_	edition ,2017.	
2.	NedMohan, ToreM. Undeland, WilliamP. Robbins, "PowerElectronicsConverters	Applic
~	ations and Design", McGraw-Hill Education, 3 rd edition, 2007 _{nd}	
3.	P.C.Sen Power Electronics, Tata McGraw-Hill Publishing, 2 edition, 2006.	NT
4.	vedam Subramanyam, 'Power Electronics-Devices Converter Applications',	, New
Woh T	Age international (P) Limited, 2 nd edition, 2018.	
wed L	https://pptel.ac.in/courses/108101038	
$\frac{1}{2}$	https://nptel.ac.in/courses/100101030 https://nptel.ac.in/courses/108105066	
۷.	<u>10010000</u>	

#### ELECTRICAL POWER GENERATION, TRANSMISSION AND DISTRIBUTION

Course	200002502	Veer	ш	Som octor(c)	Т
Code	2022303	rear	111	Semester(s)	1
Course	Professional	<b>D</b> 1	FFF	Course	<b>T</b> 1
Category	Core	Branch	EEE	Туре	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Circuit Theory
Continuous	20	Semester	=0		100
Internal	30	End	70	Total	100
<b>Evaluation:</b>		<b>Evaluation:</b>		Marks:	

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	<b>Understand</b> the basic concepts of electrical power generation, transmission and							
	distribution. (L2)							
CO2	Apply the principles of physical sciences to understand the working of conventional							
	and non-conventional power plants. (L3)							
CO3	<b>Compute</b> the transmission line parameters, sag of an overhead transmission line and							
	string efficiency of insulators. (L3)							
CO4	Analyze the performance of various types of transmission lines and distribution							
	system topologies. (L4)							
CO5	<b>Illustrate</b> the different types of insulators, underground cables and effect of corona.							
	(L3)							
CO6	Get the ability to engage in independent study to make an effective presentation and							
	submit report on generation, transmission and distribution concepts in various							
	domains.							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	1					1	1					1	2	1
CO3	2		1			1							2	1
CO4		2										2	2	1
CO5	2						1						2	1
CO6	3	3							3	3			2	1

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
Ι	Conventional and Non-conventional power Generation: General layout,	
	working and site selection of thermal power plant, hydroelectric power plant,	CO 1
	nuclear power plant and pumped storage plants. Introduction to Non-	CO 2
	Conventional Sources Solar Energy, wind Energy (descriptive treatment	CO 6
	only)	

II	<b>Transmission Line parameters:</b> Calculation of resistance, Skin effect, Proximity effect. Calculation of inductance of single phase, three phase lines	CO 1 CO 3
	with symmetrical spacing. Inductance of composite conductor lines.	CO 6
	Capacitance - Calculation for single phase two wire line, capacitance	
	calculation for 3 phase lines with symmetrical spacing	
III	Performance of Transmission Lines: Classification of lines, Medium	
	Transmission lines - nominal T method, nominal $\pi$ method and long	
	transmission lines - Rigorous solution method, ABCD constants of	CO 1
	Transmission lines, calculation of voltage regulation and transmission	CO 1 CO 3
	efficiency, Ferranti effect.	<b>CO 4</b>
	Sag, Tension Calculations:	CO 6
	Sag and Tension Calculations with equal and unequal heights of towers,	
	Effect of Wind and Ice on weight of Conductor, Numerical Problems.	
IV	<b>Insulators:</b> Types, potential distribution over a string of suspension insulators. String efficiency and methods of increasing string efficiency. <b>Corona:</b> Phenomena, disruptive and visual critical voltages and corona power loss (Descriptive treatment only). <b>Underground Cables:</b> Types, material used. Insulation resistance, Grading of cables - capacitance grading and inter sheath grading (Descriptive treatment only).	CO 1 CO 3 CO 5 CO 6
V	<ul> <li>D.C. Distribution Systems: Classification of Distribution Systems, Voltage Drop Calculations in D.C Distributors for the following cases: Radial D.C Distributor fed one end and at the both the ends (equal/unequal Voltages) and Ring Main Distributor.</li> <li>A.C. Distribution Systems: Voltage Drop Calculations in A.C. Distributors for the following cases: Power Factors referred to receiving end voltage and with respect to respective load voltages.</li> </ul>	CO 1 CO 4 CO 6

## Text Books J.B.Gupta, Transmission and Distribution of Electrical Power -S.K.Kataria and sons,10th edition, 2012

2. Dr. S. N. Singh, Electric power generation Transmission & Distribution- PHI learning Pvt Ltd, New Delhi, 2nd Edition, 2010

#### **Reference Books**

- 1. Mehta, Rohit, et al. Principles of Power System: Including Generation, Transmission, Distribution, Switchgear and Protection, S. Chand, 4th Edition, 2005.
- 2. Generation, Distribution and Utilization of Electrical Energy, C.L.Wadhwa, New Age International publishers, 6th Edition 2018.
- 3. I.J.Nagarath & D.P. Kothari, "Power System Engineering", 3e. N.p., McGraw-Hill Education, 2019.

#### Web Links

1. https://nptel.ac.in/courses/108102047

#### AIR POLLUTION AND CONTROL

Course Code	20CE2501A	Year	III	Semester(s)	Ι
Course Category	Open Elective-I	Branch	Common to all	Course Type	Theor y
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes
Upon	successful completion of the course, the student will be able to:
CO1	Understand the various types of air pollutants and their effects. (L2)
CO2	<b>Examine</b> the behaviour of air pollutants with reference to meteorological parameters
002	(L3)
CO3	Analyze the samples, pollutants from atmosphere (L4)
<b>CO4</b>	<b>Identify and understand</b> the different methods to control the particulate matter (L4)
COS	Categorize and understand the methods for the control of pollutants from gaseous
005	emissions (L4)

	Contribution of Course Outcomes towards achievement of Program Outcomes													
			1.	- Low		2-Medium		3-	3-High		-			
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2				2	2						2	2
CO2	2	2				2	2						2	2
CO3	3	3	3			3	3						3	3
<b>CO4</b>	2	2	2		2	3	3						2	3
CO5	2	2	2		2	3	3						2	3
Avg.	2	2	2		2	3	3						2	3

	Syllabus	
	AIR POLLUTION & EFFECTS	
UNIT-1	natural and artificial-primary and secondary air pollutants. Effect of air pollutants on man-material and vegetation-global effects of air pollution	CO1
	greenhouse effect, acid rains	
	and ozone layer threat.	
	METEROLOGY AND PLUME DISPERSION	
UNIT-2	Properties of atmosphere-heat, pressure, wind forces, moisture and relativehumidity influence of meteorological phenomenon on air quality-	CO2
	wind rose diagram, inversions and Plume behavior, Gaussian model for	
	plume dispersion.	
	SAMPLING OF AIR POLLUTION:	
UNIT-3	Stack sampler; Sampling Procedure- Sampling point – size – Isokinetic	CO3

	Conditions –Sampling of Particulate matter and Gases. Sampling	
	methods–Indian standard methods of	
	analysis of SO2 and NO _x gases- Air Quality and Emission standards.	
UNIT-4	METHODS OF CONTROLLING AIR POLLUTION	CO4
	Different means of control of effluent discharges into the atmosphere.	
	Control of	
	Particulate matter by equipment -Settling chamber, inertial separators,	
	fabricfilters, wet scrubbers, Electrostatic Precipitators	
	CONTROL OF GASEOUS POLLUTANTS:	
UNIT-5	Controlling methods of Gaseous Emissions- combustion, adsorption,	CO5
	absorption, closed collections and recovery systems- Control of SO2 and	
	NO _x gases.	

	Learning Resources
	1. Air Pollution and Control by Rao M.N and Rao, H.N., Tata McGraw Hill,
Taxt Books	New Delhi 2007.
I CAL DOOKS	2. Environmental Engineering and Management, (2nd Edition) by Suresh, S.
	K. Kartarai & Sons, 2005.
Reference	1. An Introduction to Air pollution by Trivedy, R.K., B. S. Publications, 2005.
Books	2. Air pollution by Wark and Warner, Addison-Wesley Publications, 1998.
E-Resources	
& other	https://pptel.ac.in/courses/105102089/8
digital	https://hpter.ac.in/courses/105102007/6
material	

#### SENSOR TECHNOLOGY

Course	20EC2501A	Year	III	Semester	Ι
Code					
Course	Open	Branch	Common to	<b>Course Type</b>	Theory
Category	Elective-I		all		
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
<b>Evaluation:</b>		<b>Evaluation:</b>			

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Understand the concept of sensors and its characteristics. (L2)							
CO2	Select the physical principles of sensing based on sensor signals and systems (L3)							
CO3	Identify the sensor interfacing with various electronics circuits (L3)							
<b>CO4</b>	Utilize the practical approach in design of technology based on different sensors. (L3)							
<b>CO5</b>	List various sensor materials and technology used in designing sensors. (L4)							

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
*	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	PSO1	PSO2
CO1	2											12		
	2											2		
	3				2								3	
CO3	2				2								2	
CO4	2	2			2								2	2
05		2				C.	ullahu							2
Linit No.	C	mton	ta			5	ynabu	IS					Janna	100
Unit No	. <u>C</u>	onten				1.01						ſ	Mapped CO	
1	Se	ensors	Func	lamer	itals a	and C	harac	teristi	CS			(	COI, CO	02
	Se	nsors,	, Sign	als ar	nd Sys	stems;	Sens	or Cl	assific	ation;	Units	of		
	Μ	easure	ement	s; Sen	sor Cł	naracte	eristic	S						
II	Pł	iysica	l Prin	ciples	s of Se	ensing	5					(	CO1, C	02
	El	ectric	Ch	arges,	Fie	lds,	and	Poter	ntials;	Cap	acitanc	e;		
	Μ	agneti	sm; ]	Induct	ion; 1	Resist	ance:	Piezo	electr	ic Effe	ect: Ha	all		
	Ef	fect: '	Temp	eratur	e and	Therr	nal Pi	operti	ies of	Mater	ial: He	at		
	Tr	ansfei	• Ligt	nt∙ Dv	namic	Mode	els of s	Senso	r Elen	nents				
III	In	terfac	e Ele	ctron	c Cir	cuits						(	$r_{01}$ C	03
111	Interface Electronic Circuits										.01, 0	05		
input Characteristics of interface Circuits, Amplifiers,									,					
	Excitation Circuits, Analog to Digital Converters, Direct													
	Di	gitiza	tion a	ind Pr	ocessi	ing, B	ridge	Circu	its, D	ata				
	Transmission, Batteries for Low Power Sensors													

IV	Sensors in Different Application Area	CO1, CO4
	Occupancy and Motion Detectors; Position, Displacement, and	
	Level; Velocity and Acceleration; Force, Strain, and Tactile	
	Sensors; Pressure Sensors, Temperature Sensors	
V	Sensor Materials and Technologies	CO1, CO5
	Materials, Surface Processing, Nano-Technology	

#### **Text Books**

1. J. Fraden, Handbook of Modern Sensors: Physical, Designs, and Applications, AIP Press, Springer

2. D. Patranabis, Sensors and Transducers, PHI Publication, New Delhi

#### **Reference Books**

1. Mechatronics- Ganesh S. Hegde, Published by University Science Press (An imprint of Laxmi Publication Private Limited).

#### e- Resources & other digital material

1. http://www.infocobuild.com/education/audio-video-

 $\underline{courses/electronics/IndustrialInstrumentation-IIT-Kharagpur/lecture-34.html}$ 

#### ELECTRONIC INSTRUMENTATION

Course	20EC2501B	Year	III	Semester	Ι
Code					
Course	Open	Branch	Common to	<b>Course Type</b>	Theory
Category	Elective-I		All		
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
<b>Evaluation:</b>		<b>Evaluation:</b>			

___

---

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	<b>Comprehend</b> the concepts of electronic instrumentation (L2)						
CO2	<b>Identify</b> the <b>Performance</b> characteristics of instruments (L3)						
CO3	Illustrate the different types of Signal Generator, Wave Analyzers& Bridges (L3)						
CO4	Analyze the various types of Oscilloscopes (L4)						
CO5	<b>Illustrate</b> the concept of various types of Transducers. (L3)						

Mapp	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note:	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
	* - Av	verage	value	indica	ates cou	urse co	orrelatio	on stren	gth wi	ith map	ped PO			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2
CO1	2									2			2	2
CO2	2									2			2	2
CO3	3									2			2	2
CO4		2								2			2	2
CO5	2									2			2	2

Syllabus								
Unit	Contents	Mapped CO						
No.								
T	<b>Performance characteristics of instruments:</b> Static characteristics, Errors in Measurement, Dynamic Characteristics, DC Voltmeters, Multi range, Range extension, Thermo couple type	CO1 CO2						
I	RF ammeter, Ohmmeters series type, shunt type, Miltimeteres for Voltage, Current and resistance measurements.	01,002						
Π	Signal Generator & Wave Analyzers : Fixed and variable signal	CO1, CO3						
	generators, AF oscillators, Standard signal generator, AF sine and							
	square wave signal generators, Function Generators, Basic wave							
-----	--------------------------------------------------------------------------	---------------	--	--	--	--		
	analyzers, Frequency selective wave analyzers, Hetero- dyne wave							
	analyzer, Harmonic Distortion Analyzers, Spectrum Analyzers.							
	<b>Oscilloscopes:</b> Dual trace oscilloscope, Measurement of amplitude,							
III	period and frequency, Sampling oscilloscope, storage oscilloscope,	CO1, CO4						
	digital readout oscilloscope, digital storage oscilloscope.							
	Bridges: Wheatstone Bridge, AC Bridges Measurement of	~ ~ ~ ~ ~ ~ ~						
IV	inductance- Maxwell's bridge, Measurement of capacitance - CO1, CO3							
	Schearing Bridge. Wien Bridge, Q-meter.							
	<b>Transducers:</b> Resistance, Capacitance, inductance, Strain gauges,							
V	LVDT, Piezo Electric transducers, Resistance Thermometers,	CO1. CO5						
	Thermocouples, Thermistors, Sensistors, force, pressure, velocity,	,						
	humidity, moisture, speed, Data acquisition system.							

### **Text Books**

1. Electronic instrumentation, - H.S.Kalsi, Tata McGraw Hill, 2nd edition 2004.

2. Modern Electronic Instrumentation and Measurement Techniques – A.D. Helfrick and W.D. Cooper, PHI, 5th Edition, 2002.

## **Reference Books**

1. Electronic Instrumentation & Measurements - David A. Bell, PHI, 2nd Edition, 2003.

---

2. Electronic Test Instruments, Analog and Digital Measurements - Robert A.twitter, Pearson Education, 2nd Edition ,2004

Course Code	20EE2501A	Year	III	Semester(s)	Ι
Course Category	Open Elective-I	Branch	Common to All	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# ELECTRICAL SAFETY

Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to				
CO1	Understand the Indian power sector organization and Electricity rules, electrical				
	safety in residential, commercial, agriculture, hazardous areas and use of fire				
	extinguishers. (L2)				
CO2	Assess the Electrical Safety measures in operation and maintenance. (L3)				
CO3	Apply the safety measures during installation, testing and commissioning. (L3)				
CO4	Analyze the Electrical Safety, Electric Shocks and Their Prevention. (L4)				
CO5	Examine the hazardous areas and the fire extinguishers. (L4)				
CO6	Submit a report on safety measures.				

### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)

	Strength of correlations (5. fingh, 2. Weaturn, 1. Low)													
	PO1	PO2	PO_3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1		1				1		
CO3	2							1				1		
CO4		3				1								
CO5		3												
CO6	3	3						3	3	3				

	SYLLABUS				
Unit	Contents	Mapped			
No.		CO			
Ι	<b>Introduction To Electrical Safety, Shocks And Their Prevention:</b> Terms and definitions, objectives of safety and security measures, Hazards associated with electric current and voltage, principles of electrical safety, Approaches to prevent Accidents. Primary and secondary electrical shocks, possibilities of getting electrical shock and its severity, medical analysis of electric shocks and its effects, shocks due to flash/ Spark over's, prevention of shocks, safety precautions against contact shocks, flash shocks, burns, residential buildings andshop.	CO1, CO2 CO3, CO4, CO6			
II	<b>Electrical Safety in Residential, Commercial and Agricultural</b> <b>Installations</b> : Wiring and fitting –Domestic appliances –water tap giving shock –shock from wet wall –fan giving shock –multi-storied building –	CO1, CO2			

	Temporary installations – Agricultural pump installation –Do's and Don'ts	CO4,
	for safety in the use of domesticelectrical appliances.	CO6
III	Electrical Safety during Installation, Testing and Commissioning,	
	<b>Operation and Maintenance</b> : Preliminary preparations –safe sequence –	CO1,
	risk ofplant and equipment –safety documentation –field quality and safety	CO3
	-personal protective equipment –safety clearance notice –safety precautions	CO4,
	-safeguards for operators –safety.	CO6
IV	Electrical Safety in Hazardous Areas: Hazardous zones –class 0,1 and 2 –	
	spark, flashovers and corona discharge and functional requirements –	CO1,
	Specifications of electrical plants, equipment's for hazardous locations	CO2,
	Equipment Earthing: Introduction, Equipment earthing, Functional	CO5,
	requirements of Earthing system, Neutral grounding, Protection against	CO6
	energized Metal parts.	
V	Fire Extinguishers: Fundamentals of fire-initiation of fires, types;	CO1,
	extinguishing techniques, prevention of fire, types of fire extinguishers, fire	CO5,
	detection and alarm system; CO ₂ , Halogen gas and foam schemes.	CO6

#### **Text Books**

- 1. Rao, S. and Saluja, H.L., "Electrical Safety, Fire Safety Engineering and Safety Management", Khanna Publishers, 4th edition, 2020
- 2. John Codick, "Electrical safety hand book", McGraw Hill Inc., 3rd edition, 2006

### **Reference Books**

- 1. Cooper.W.F, "Electrical safety Engineering", Newnes-Butterworth Company, 3rd edition, 1998.
- 2. Kothari, D.P and Nagrath, I.J., "Power System Engineering", McGraw Hill, 3rd edition, 2019.
- 3. Wadhwa, C.L., "Electric Power Systems", New Age International, 8th edition, 2004.

# **CYBER LAWS**

Course Code	20IT2501A	Year	III	Semester	Ι
Course Category	Open Elective- I	Den Elective- I Branch		Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of Section 80 of IT Act 2000, Cyber Crime, Computer Crime, Internet Theft/Fraud, Goods and Services. (L2)				
CO2	Demonstrate the basic concepts of Cognizable and Non-Cognizable Offences, Hacking, Teenage Web Vandals, Prevalence and Victimology, Consumer Protection Act. (L3)				
CO3	Analyze the concepts of Arrest for "About to Commit" an Offence Under the IT Act, A tribute to Draco, Cyber Fraud, Computer as Commodities, Consumer Complaint. (L4)				
CO4	Explain the concepts of Arrest, But No Punishment, Cyber Cheating, Theft of Intellectual Property, Restrictive and Unfair Trade practices. (L4)				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2											
CO1						3	3	3			3	3
CO2						3	3	3			3	3
CO3						3	3	3			3	3
CO4						3	3	3			3	3

Syllabus				
Unit No	Contents	Mapped CO		
I	<b>The IT Act, 2000:A Critique:</b> Crimes in Millennium, Section 80 of the IT Act, 2000-AWeapon or a Farce?, Forgetting the Line between Cognizable and Non-Cognizable Offences, Arrest for "About to Commit" an Offence Under the IT Act, A tribute to Draco, Arrest, But No Punishment	CO1, CO2, CO3, CO4		
II	<b>Cyber Crime and Criminal Justice: Penalties, Adjudication and</b> <b>Appeals Under the IT Act, 2000:</b> Concept of Cyber Crime and the IT Act, 2000, Hacking, Teenage Web Vandals, Cyber Fraud and Cyber Cheating.	CO1, CO2, CO3, CO4		

ш	<b>Traditional Computer Crime: Early Hacker and Theft of</b> <b>Components:</b> Traditional Problems, Recognizing and Defining Computer Crime, Phreakers: Yesterday's Hackers, Hacking, Computer as Commodities, Theft of Intellectual Property.	CO1, CO2, CO3, CO4
IV	<b>Identity Theft and Identity Fraud:</b> Typologies of Internet Theft/Fraud, Prevalence and Victimology, Physical Methods of Identity Theft.	
V	<b>Protection of Cyber consumers in India:</b> Are Cyber consumers Covered under the Consumer Protection Act?, Goods and Services, Consumer Complaint, Restrictive and Unfair Trade practices	CO1, CO2, CO3, CO4

Learning Resources					
Text books					
1. Vivek Sood, "Cyber Law Simplified", "	Гаta McGraw Hill.				
2. Marjie T. Britz, "Computer Forensics a	nd Cyber Crime", Person.				
3. Ferrera, "Cyber Laws Texts and Cases"	, Cengage.				
References					
1. Vakul Sharma, "Handbook Of C	yber Laws" Macmillan India Ltd, 2 nd				
Edition,PHI,2003.					
2. Justice Yatindra Singh, " Cyber Laws"	. Justice Yatindra Singh, "Cyber Laws", Universal Law Publishing, 1 st Edition, New				
Delhi, 2003.					
3. Sharma, S.R., "Dimensions Of Cybe	. Sharma, S.R., "Dimensions Of Cyber Crime", Annual Publications Pvt. Ltd., 1st				
Edition, 2004.					
4. Augastine, Paul T.," Cyber Crimes And	. Augastine, Paul T.," Cyber Crimes And Legal Issues", Crecent Publishing				
Corporation, 2007	Corporation, 2007				
e-Resources and other Digital Material					
1. https://www.coursera.org/lecture/cyber-	conflicts/introduction-to-cybercrime-and-				
fundamental-issues-xndSq					
2. https://www.youtube.com/watch?v=F7r	nH5vz1qEI&list=PLf8YqCm9HoI6fb4LdoY2				
tFgJfM0PrgInS&ab_channel=Computing	ngforAll				
3. https://www.youtube.com/watch?v=F7r	nH5vz1qEI&t=41s&ab_channel=Computingf				
orÂll					

### **DESIGN THINKING**

<b>Course Code</b>	20ME2501A	Year	III	Semester	Ι
Course	Open Elective I	Branch	Common	Course Type	Theory
Category	Open Elective-I		to All		Theory
Credits	3	L-T-P	3-0-0	<b>Pre-requisites</b>	-
Continuous		Semester End		<b>Total Marks:</b>	
Internal	30	<b>Evaluation:</b>	70		100
<b>Evaluation:</b>					

СО	Statement
CO1	Understand the principles of design thinking and its approaches [L2]
CO2	Apply the empathy, the Define phase and develop an idea through ideation Techniques
	in human-centered design problems. [L3]
CO3	Apply the design thinking techniques for innovation processes [L3]
<b>CO4</b>	Analyze the prototype and test in a design thinking context. [L4]

Contribution of Course Outcomes towards achievement of Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3			2	2		3	3	2	2	2	3
CO2			3			2	2		3	3	2	2	1	3
CO3			3			2	2		3	3	3	2	1	3
CO4			3			2	2		3	3	2	2	1	3

Content	
Unit No     Contents     M	Mapped
	CO
Introduction to Design Thinking	
An insight into Design, Design Methodology, the origin of Design thinking,	
<b>UNIT-1</b> Design thinking Vs Engineering thinking, the importance of Design	CO1
Thinking, Design Vs Design thinking, understanding Design thinking and	COI
its various process models or frameworks, Stanford process models and its	
five stages, features of design thinking, application of Design thinking	
UNIT-2 Empathize in Design Thinking:	
Human-Centered Design (HCD) process, explanation of HCD design	
thinking with examples, Role of Empathy in design thinking, persona	CO1,
creation and its importance, tools of empathy: Empathy maps, advantages	CO2
and disadvantages of empathy maps, Customer journey map and its	
advantages & disadvantages, Mind Maps, and its uses, understanding	
empathy tools.	
UNIT-3 Define Phase and Ideation:	
Explore define phase in Design Thinking, Methods of Define phase.	CO1
Introduction to ideation Methods, convention methods for ideation,	CO1,
intuitive methods: Brainstorming, storyboard telling, select ideas from	002
ideation Methods: Bingo Selection, Six Thinking Hats.	

LINIT A	Destatuning and Testing	001							
UN11-4	Prototyping and Testing:								
	Prototyping and methods of prototyping, Difference between low fidelity	CO3							
	and high- fidelity prototypes, paper prototyping, techniques for								
	implementing paper prototyping, Digital prototyping, user testing methods,								
	Advantages, and								
	disadvantages of user Testing/ Validation								
UNIT-5	Design Thinking for Innovation:								
	Innovation in Design Thinking, Definition of innovation, the art of	CO1							
	innovation, types of innovations, product innovation, process innovation,	CO1,							
	and organizational innovation, characteristics of innovation, levels of	005							
	innovation, Innovation towards design, Case studies								
	Learning								
	Resources								
Text	1. Change by design, Tim Brown, 2009, Harper Collins								
books:	2. Engineering design, George E Dieter,4th Revisededition,2009	McGraw							
	Hill.								
	1. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley	y & Sons							
	2. Design Thinking - The Guidebook–Facilitated by the Royal Civil service								
Roforon	Commission, Bhutan								
ce books	3. Design Methods: A Structured Approach for Driving Innovation	on in							
CC DUUKS	YourOrganization, Vijay Kumar, First Edition, 2012, Wiley								
	4. Human-Centered Design Toolkit: An								
	Open-								
	Source Toolkit to Inspire New Solutions in the DevelopingWorld, IDEO,	Second							
	Edition ,2011, IDEO								
e-	1. <u>https://www.interaction-desiqn.ora/literature/topics/desiqn-thinkinq</u>								
Resourc	2. <u>https://www.interaction-desiqn.prq/literature/article/how-tq-</u>								
es &	<pre><eve'op-an empath\capproach-in-design-thinking<="" pre=""></eve'op-an></pre>								
other									
digital									
material									

# LOGISTICS AND SUPPLY CHAIN MANAGEMENT

Course Code	20ME2501B	Year	III	Semester	Ι
<b>Course Category</b>	Open Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal	30	Semester End	70	Total Marks:	100
<b>Evaluation:</b>		Evaluation:			

Upon s	Course Outcomes accessful completion of the course, the student will be able to	Level	Unit No
C01	Identify the importance of Supply Chain Management	L2	1
CO2	Explain different Inventory control techniques	L1	2
CO3	Design various Supply Chain Networks suitable for various market conditions	L3	3
CO4	Discuss supply chain strategies and procurement strategies	L1	4
CO5	Identify various issues in Supply Chain Management	L2	5

CO'S /PO'S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1		2							2		3			1
CO 2		2							2		3			1
CO 3		2							2		3			1
CO 4		2							2		3			1
CO 5		2							2		3			1

	Syllabus	
UNIT	Content	Mappe
		dCO
1	Introduction to Supply Chain Management (SCM): Concept of supply	CO1
	management and SCM, importance of supply chain flows, core competency,	
	value chain, elements of supply chain efficiency, key issues in SCM,	
	decision phases, supply chain integration, process view of a supply chain,	
	competitive strategy and supply chain strategies, uncertainties in supply	
	chain, supply chain drivers.	
2	Inventory Management: Introduction, selective control techniques, cost	CO2
	involved in inventory system, single stage inventory control, economic lot	
	size models, application to economic production quantity, effect of	
	demand uncertainty, single period models, initial inventory, multiple order	
	opportunities, deterministic models, quantity discounts. periodic and	
	quantity review policies, mathematical modeling under known stock out	

	costs and service levels, joint replenishment for multiple items, inventory	
	system constraints, working capital restrictions, and storage space	
	restrictions.	
3	<b>Designing Supply Chain Network:</b> Introduction, network design, factors influencing network design, data collection, data aggregation, transportation rates, warehouse costs, capacities and locations, models and data validation, key features of a network configuration, impact of uncertainty on network design, network design in uncertain environment, value of information: Bullwhip effect, information sharing, information and supply chain trade-offs, distribution strategies, direct shipment distribution strategies, transshipment and selecting appropriate strategies.	CO3
4	Supply Chain Integration: Introduction, puch pull supply chains, identifying	004
-		
	appropriate supply chain strategy Sourcing and procurement outsourcing	CO4
	appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits importance of suppliers evaluating a potential supplier supply	CO4
	appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts competitive bidding and negotiation. Purchasing objectives of	CO4
	appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized	CO4
	appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized purchasing purchasing procedure types of orders, e-procurement tender	04
	appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized purchasing, purchasing procedure, types of orders, e-procurement, tender buying role of business in supply chains	04
5	appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized purchasing, purchasing procedure, types of orders, e-procurement, tender buying, role of business in supply chains.	C04
5	<ul> <li>supply chain integration. Introduction, push-pun supply chains, identifying appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized purchasing, purchasing procedure, types of orders, e-procurement, tender buying, role of business in supply chains.</li> <li>Issues in Supply Chain Management: Introduction, risk management, managing global risk, issues in international supply chain, regional</li> </ul>	C04 C05
5	<ul> <li>supply chain integration. Introduction, push-put supply chains, identifying appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized purchasing, purchasing procedure, types of orders, e-procurement, tender buying, role of business in supply chains.</li> <li>Issues in Supply Chain Management: Introduction, risk management, managing global risk, issues in international supply chain, regional differences in logistice. Logal issues in supply chain issues in potential supply chain.</li> </ul>	C04
5	<ul> <li>supply chain integration. Introduction, push-put supply chains, identifying appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized purchasing, purchasing procedure, types of orders, e-procurement, tender buying, role of business in supply chains.</li> <li>Issues in Supply Chain Management: Introduction, risk management, managing global risk, issues in international supply chain, regional differences in logistics. Local issues in supply chain, issues in natural disaster and other calamitics issues for SMEs.</li> </ul>	C04
5	<ul> <li>supply chain integration. Introduction, push-puil supply chains, identifying appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized purchasing, purchasing procedure, types of orders, e-procurement, tender buying, role of business in supply chains.</li> <li>Issues in Supply Chain Management: Introduction, risk management, managing global risk, issues in international supply chain, regional differences in logistics. Local issues in supply chain, issues in natural disaster and other calamities, issues for SMEs, organized retail in India, reverse logistics.</li> </ul>	C04

Text Books:

1. Simchi-Levi, D. Kaminsky, P.Simchi-Levi, E. and Ravi Shankar, Designing and Managingthe Supply Chain: Concepts, Strategies and Case Studies, 3/e, Tata McGraw-Hill, 2008.

2. Chopra, S. and Meindl, Supply Chain Management: Strategy, Planning and Operations, 2/e, Pearson Education, 2004.

### Reference Books:

1. Doebler, D.W. and Burt, D.N, Purchasing and Supply Management-Text and Cases, 6/e,McGraw-Hill, 1996.

2. Tersine, R.J, Principles of Inventory and Materials Management, 4/e, Prentice Hall, 1994.

#### e- resources:

1. <u>https://ocw.mit.edu/courses/engineering-systems-division/esd-273j-logistics-and-supply-chain-management-fall-2009/lecture-notes/</u>

2. https://nptel.ac.in/courses/110/108/110108056/

# UTILIZATION OF ELECTRICAL ENERGY

Course Code	20EE4501A	Year	III	Semester	Ι
Course Category	Professional Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes
Upon si	accessful completion of the course, the student will be able to
001	Understand the utilization of electrical systems and their advantages in industrial
COI	applications. (L2)
CO2	Apply the knowledge to select suitable motor for electric drives, appropriate heating /
002	welding techniques and Illumination systems in various industrial applications. (L3)
CO3	Apply the knowledge to select suitable track electrification system and traction motors. (L3)
CO4	Analyze the concepts of electric drives, different heating/welding techniques and various
	Illumination systems for industrial applications. (L4)
COF	Analyze the performance parameters of speed-time curves for different services and the
COS	mathematical concepts to design traction system. (L4)
COC	Submit a report on electric drives, electric heating & welding, illumination and electric
	traction system.

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1							2	2
CO3	3						1						2	2
CO4		3				1							2	2
CO5		3					1						2	2
CO6		3				3			3	3			2	2

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	<b>Electric Drives</b> Type of electric drive, choice of motor, starting and running characteristics, speed control, temperature rise of electrical machines, heating-time and cooling-time curves, selecting motor power rating for continuous, intermittent and short timeduty, types of industrial loads, applications of electric drives.	CO1 CO2 CO4 CO6

П	Electric Heating & Electric Welding Advantages and methods of electric heating, methods of heat transfer, Stefan's law, design of heating elements, resistance heating, construction and working principle of induction furnaces, arc furnaces and dielectric heating. Types of welding, resistance and arc welding, comparison between A.C and D.CWelding.	CO1 CO2 CO4 CO6
III	<b>Illumination</b> Introduction, Terms used in illumination, laws of illumination, sources of light, Incandescent lamps, Discharge lamps, MV and SV lamps, fluorescent lamps- CFL-LED lamps, Types of lighting schemes, factory lighting, flood lighting and street lighting.	CO1 CO2 CO4 CO6
IV	<b>Electric Traction-I</b> Systems of electric traction and systems of track electrification, special features of traction motors, methods of electric braking-plugging, rheostat braking and regenerative braking, Speed-time curves for different services-trapezoidal and quadrilateral speed time curves.	CO1 CO3 CO5 CO6
V	<b>Electric Traction-II</b> Mechanics of train movement, Calculations of tractive efforts and power output of traction motor, Specific energy consumption for given run, effect of varying acceleration and braking retardation, dead weight, accelerating weight, adhesive weight and coefficient of adhesion, Current collectors for overhead system.	CO1 CO3 CO5 CO6

### Text Books:

1. H. Partab, "Art & Science of Utilization of Electrical Energy", Dhanpat Rai & Sons, 12th edition, 2012.

2. E. Openshaw Taylor, "Utilization of Electrical Energy", Orient Longman, 15th edition, 2012.

#### **Reference Books:**

 J.B.Gupta, "Utilization of Electric Power and Electric Traction", S.K. Kataria & Sons, 10th edition, 2012.

2. C.L.Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age international (P) Limited Publishers, 2015.

### e- Resources

https://nptel.ac.in/courses/108105060

# **ELECTRICAL MACHINE DESIGN**

Course Code	20EE4501B	Year	III	Semester	Ι
Course Category	Professional Elective-I	Branch	E.E. E	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Electrical Machines – I &II
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	<b>Classify</b> the materials used for construction of electrical machines(L2)							
CO2	Assess the overall dimensions of a transformer. (L3)							
CO3	<b>Examine</b> the design, performance of transformer (L4)							
CO4	<b>Develop</b> the overall dimensions of a rotating machine. (L3)							
C05	Analyze the design and performance of rotating machines. (L4)							
<b>CO6</b>	Submit a report on design of electrical machines							

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3			3				1				1	2	1
CO3		3	3										2	1
CO4	3			3				1				1	2	1
CO5		3	3										2	1
CO6						1			3	3	1			

Syllabus							
Unit	Contents	Mapped					
No.		CO					
Ι	Fundamental Aspects of Electrical Machine Design						
	Design of machines - design factors - limitation in design - modern trends in	CO1					
	electrical machine design – types of magnetic, electric and insulating	CO2					
	materials - modes of heat dissipation - cooling of rotating machines -	CO4					
	methods of cooling.	CO6					
	Computer Aided Design (CAD) of Electrical Machines						
	Limitations and assumptions in traditional designs, need of CAD, analysis,						
	synthesis and hybrid methods, design optimization methods, variables, constraints						
	and objective function, problem formulation						

II       Design of transformers         Transformer windings – output equation – design of main dimensions         design of core - choice of flux density – determination of number of turns	
Transformer windings – output equation – design of main dimensions-– design of core - choice of flux density – determination of number of turns	
design of core - choice of flux density – determination of number of turns	CO1
	CO2
and length of mean turn - resistance and leakage reactance – no load current	CO3
calculation –cooling of transformers- calculation of number of tubes.	CO6
III Design of DC Machines	
Output equation –selection of specific magnetic and electric loadings -	CO1
separation of D and L – estimation of number of conductors, armature slots	CO4
and conduct dimensions – choice of number of poles and calculation of	CO5
length of airgap – design of field systems, interpoles and brushes.	CO6
IV Design of Induction motors	CO1
output equation -main dimensions – choice of average flux density and	CO4
ampere conduction per meter — design of stator slots and rotor slots-	CO5
designof rotor bars end rings- design of wound rotor - design of no-load	CO6
current.	
V Design of Synchronous Machines	CO1
Types of construction – output equation - main dimensions – short circuit	CO4
ratio and its effects on the performance – design of rotor –Design of field	CO5
winding – Design of turbo alternators – Rotor design temperature rise and its	CO6
effects.	
Learning Resources	
Text Books	
1. A.K.Sawhney, "A Course in Electrical Machines Design", Dhan path Rai & Co. 6 ^{ar} edition 2010.	
Reference Books	
1. AE Clayton and NN Hancock, "The Performance and Design of Direct Current Machines", CBS Publishers, 3 rd edition, 2004.	
2. M.G. Say, "Performance and Design of A.C. Machines", ELBS and Pitman & So edition, 2013.	ons, 4 th
3. S. K. Sen, "Principles of Electrical Machine Design with computer programmes' Oxford and IBH Company Pvt. Ltd. New Delhi, 2 nd edition,2006.	,
4. K. M. Vishnu Murthy, "Computer Aided Design of Electrical Machines", B.S.	
Publications, 1 st edition 2008.	
Publications, 1 st edition 2008. Web Links	
Publications, 1 st edition 2008. Web Links 1. https://cusp.umn.edu/electric-machine-design-videos	
Publications, 1 st edition 2008. Web Links 1. <u>https://cusp.umn.edu/electric-machine-design-videos</u> 2. https://nptel.ac.in/courses/108102146	
Publications, 1 st edition 2008.         Web Links         1. <u>https://cusp.umn.edu/electric-machine-design-videos</u> 2. <u>https://nptel.ac.in/courses/108102146</u> 3. <u>https://nptel.ac.in/courses/108/105/108105017</u>	

# **RENEWABLE ENERGY RESOURCES**

Course Code	20EE4501C	Year	III	Semester(s)	Ι
Course Category	Professional Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes									
Upon	Upon successful completion of the course, the student will be able to									
CO1	<b>Understand</b> the process of energy collection, quantification, storage, conversion and									
	applications of non-conventional sources. (L2)									
CO2	Apply the knowledge of energy conversion techniques to harvest energy from different									
	types of renewable sources. (L3)									
CO3	Apply the basic laws of physics to interpret the constraints to efficiently extract energy									
	from renewable sources. (L3)									
CO4	Analyze the theory behind the design of wind mills, MHD, biomass plants. (L4)									
CO5	Examine the performance of OTEC and Fuel cells. (L4)									
CO6	Ability to apply the various energy generation techniques and to measure the basic									
	parameters and submit a report.									

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3						3						2	1
CO3	3						3						2	1
CO4		3											2	1
CO5		3					3						2	1
CO6									3	2		3	2	1

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Principles of Solar Radiation and Solar Energy Collection	CO1,
	Role and potential of new and renewable source, the solar energy option,	CO2,
	environmental impact of solar power, physics of the sun, the solar constant,	CO3,
	extraterrestrial and terrestrial solar radiation, solar radiation on titled surface,	CO6
	instruments for measuring solar radiation and sun shine, solar radiation data.	
	Flat plate and concentrating collectors, classification of concentrating	
	collectors, orientation and thermal analysis, advanced collectors.	

II	<b>Solar Energy Storage, Applications and Photovoltaic Energy Conversion</b> Different methods, sensible, latent heat and stratified storage, solar ponds. Solar applications solar heating/cooling technique, solar distillation and drying. Solar cell fundamentals, solar cell classification, performance of solar cell- power from solar module	CO1, CO2, CO3, CO6
III	Wind Energy and Bio-Mass Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking.	CO1, CO2, CO3, CO4, CO6
IV	Ocean Energy Resources, types of wells, methods of harnessing the energy, potential in India. OTEC, principles of utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques.	CO1, CO2, CO3, CO5, CO6
V	<b>Energy Conversion</b> Principles DEC, MHD generators, principles, MHD power generation systems. Fuel cells, principles, of fuels and operating conditions, merits and demerits of different types of fuel cells, mini-hydel power plants and their economics	CO1, CO2, CO3, CO4, CO5, CO6

#### **Text Books**

- 1. Non-Conventional Energy Sources by G.D. Rai, Khanna publishers, 5th edition, 2014.
- 2. Renewable Energy resources, Tiwari and Ghosal, Narosa, 2005
- 3. Science and Technology of Photo Voltaics by Jayarama Reddy, BS publications, 2nd edition,2012

#### **Reference Books**

- 1. Non-Conventional Energy by Ashok V Desai, New age, 2005.
- 2. Non-Conventional Energy Sources by B.H.Khan, Tata Mc Graw-hill Publishing Company, 2nd edition, 2013.

### Web Links

- 1. <u>https://www.coursera.org/learn/renewable-energy-technology-fundamentals</u>
- 2. https://nptel.ac.in/courses/121106014

# HIGH VOLTAGE ENGINEERING

Course Code	20EE4501D	Year	III	Semester(s)	Ι
Course Category	Professional Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to						
CO1	Understand the basic concepts of high voltages in power system. (L2)						
CO2	<b>Apply</b> the knowledge of conduction and breakdown in different types of dielectrics. (L3)						
CO3	<b>Identify</b> various methods for generation and measurement of high voltages and currents in power system. (L3)						
CO4	Analyze the generation and measurement of high voltages and currents in high voltage engineering. (L4)						
CO5	<b>Identify</b> different techniques used for high voltage testing of electrical apparatus. (L3)						
CO6	<b>Ability</b> to understand the concepts of high voltage engineering and <b>submit a</b> report.						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3							2					2	2
CO3	3				2							2	3	2
CO4		3				1	2						3	2
C05	3										1	2	2	2
C06									3	3			2	2

SYLLABUS							
Unit	Contents	Mapped					
No.		СО					
Ι	Conduction and Breakdown in Dielectrics: Gases as insulating media,						
	collision process, Ionization process, Townsend's criteria of breakdown in						
	gases. Liquid as insulator, Conduction and Breakdown in pure liquids,						
	Conduction and Breakdown in commercial liquids. Breakdown in solid						
	dielectrics: Intrinsic breakdown, Electromechanical breakdown and						
	Thermal breakdown.						

II	Generation of High Voltages and Currents: Generation of high DC Voltages: Voltage doubler circuits, Voltage multiplier circuits and Van de graaff generators. Generation of high AC Voltages: Cascade transformers and Tesla coil arrangement. Generation of impulse voltages: Multistage impulse generators—Marx circuit. Generation of impulse currents, Tripping and control of impulse generators.	CO 1 CO 3 CO 4 CO 6
Ш	Measurement of High Voltages: Measurement of high DC voltages: General concepts of high voltage measurements, Series resistance micro ammeter, Resistance potential divider, Generating Volt meters. Measurement of high AC and Impulse voltages: Series impedance ammeters, Capacitance potential dividers, Capacitance voltage transformers, Electrostatic voltmeters, Sphere gaps, Peak-Reading voltmeters for impulse voltages.	CO 1 CO 3 CO 4 CO 6
IV	Measurement of High Currents: Measurement of high direct currents, Measurement of high alternating currents and Measurement of Impulse currents.	CO 1 CO 3 CO 4 CO 6
V	<b>High Voltage Testing of Electrical Apparatus:</b> Testing of Insulators andBushings, Testing of Isolators and Circuit breakers, Testing of Cables,Testing of Transformers and Testing of Surge arrestors.	CO 1 CO 5 CO 6

#### **Text Books**

1. M.S. Naidu, V.Kamaraju, "High Voltage Engineering" McGraw Hill, Fifth Edition, 2017.

2. E. Kuffel, W.S. Zaengl, J. Kuffel, "High Voltage Engineering Fundamentals" Elsevier, Second Edition, 2000

### **Reference Books**

1. Wadhwa C.L.", High Voltage Engineering, New Age International, Third Edition, 2012.

2. Ravindra Arora, Bharat Singh Rajpurohit, "Fundamentals of High-Voltage Engineering" Wiley India, 2019.

Web Links

- 1. https://nptel.ac.in/courses/108104048
- 2. <u>https://bharatsrajpurohit.weebly.com/high-voltage-engineering-course.html</u>

# COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code	20EE4501E	Year	III	Semester(s)	Ι
Course Category	Professional Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Understand the basic functional units of a computer system and its organization. (L2)							
CO2	Apply appropriate instructions for processing various types of computers operations. (L3)							
CO3	Apply various types of organizations on registers. (L3)							
CO4	Analyze memory hierarchy, I/O communication and pipelining. (L4)							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													3
CO2	2								1	1			2	2
CO3	2								1	1			2	2
CO4		2							1	1			2	

	SYLLABUS	
Unit No	Contents	Mapped CO
I	Register Transfer and Micro-Operations: Register Transfer Language,Register Transfer, memory Transfers, Bus construction with Multiplexers,Arithmetic Micro-operations, Logic Micro-operations, Shift Micro-operations, Arithmetic Logic Shift Unit.	CO1, CO2
Π	<b>Basic Computer Organization:</b> Instruction codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory- Reference Instructions, Input- Output and Interrupt.	CO1, CO2
III	<b>Central Processing Unit:</b> General registers Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control.	CO1, CO3
IV	<ul> <li>Computer Arithmetic: Introduction, Addition and Subtraction, Booth Multiplication Algorithm.</li> <li>Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associative Memory, Cache Memory, Virtual Memory.</li> </ul>	CO1, CO2, CO4

V	<b>Input-Output Organization:</b> Peripheral Devices, Input-output Interface, Asynchronous Data Transfer, Priority Interrupt, Direct Memory Access (DMA) Input-Output Processor	CO1,
	<b>Pipeline and Parallel Processing:</b> Parallel processing, Pipelining, Arithmetic pipeline, Instruction pipeline.	CO4

### **Text Books**

1. Morris M. Mano, Computer System Architecture, Pearson., Third Edition, 1992,

### **Reference Books**

1. William Stallings, Computer Organization and Architecture, PHI, Eighth Edition, 2010.

2. Carl Hamachar, Vranesic, Computer Organization, McGraw Hill, 2002.

Web Links

1. https://nptel.ac.in/courses/106/106/106106092/

# UNIVERSAL HUMAN VALUES

Course Code	20MC1502	Year	III	Semester	Ι
Course Category	Mandatory Course	Branch	CE,CSE,ECE, EEE,IT,ME	Course Type	Theory
Credits	0	L-T-P	2-0-0	Prerequisites	
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes								
Upon successful completion of the course, the student will be able to:								
CO1	<b>Describe</b> more aware of themselves, and their surroundings (family, society, nature)	L2						
CO2	<b>Illustrate</b> more responsibility in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.	L2						
CO3	Show better critical ability	L3						
CO4	<b>Exhibit</b> sensitivity to their commitment towards what they have understood (human values, human relationship and human society)	L3						
CO5	<b>Apply</b> what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.	L3						

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2		2						2
CO2						2		2						2
CO3						2		2						2
CO4						2		2						2
CO5						2		2						2

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Introduction - Need, Basic Guidelines, Content and Process for Value	
	Education	
	Purpose and motivation for the course, recapitulation from Universal Human	
	Values-I, Self-Exploration-what is it? - Its content and process; 'Natural	
	Acceptance' and Experiential Validation- as the process for self-exploration,	
	Continuous Happiness and Prosperity- A look at basic Human Aspirations,	CO1
	Right understanding, Relationship and Physical Facility- thebasic requirements	
	for fulfilment of aspirations of every human being with their correct priority,	
	Understanding Happiness and Prosperity correctly- A critical appraisal of the	
	current scenario, Method to fulfil the above human aspirations: understanding	
	and living in harmony at various levels.	

Learning Resources	
Natural acceptance of human values, Definitiveness of Ethical Human Cond Basis for Humanistic Education, Humanistic Constitution and Humani Universal Order, Competence in professional ethics: a. Ability to utilize professional competence for augmenting universal human order b. Ability identify the scope and characteristics of people friendly and eco-frier production systems, c. Ability to identify and develop appropriate technolog and management patterns for above production systems. Case studies of typ holistic technologies, management models and production systems, Strat for transition from the present state to Universal Human Order: a. At the le of individual: as socially and ecologically responsible engineers, technolog and managers b. At the level of society: as mutually enriching institutions organizations.	act, stic the v to dly gies ical egy vel ists and
<ul> <li>fulfilment among the four orders of nature- recyclability and self regulation nature, Understanding Existence as Co-existence of mutually interacting up in all- pervasive space, Holistic perception of harmony at all levels of exister</li> <li>V Implications of the above Holistic Understanding of Harmony on Profession</li> </ul>	n in nits ce. nal
IV Understanding Harmony in the Nature and Existence - Whole existence Coexistence Understanding the harmony in the Nature, Interconnectedness and mu	ve as
<ul> <li>and Health; correct appraisal of Physical needs, meaning of Prosperity indet Programs to ensure Sanyam and Health.</li> <li>III Understanding Harmony in the Family and Society- Harmony in Hun Human Relationship</li> <li>Understanding values in human-human relationship; meaning of Justice (r universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationshi Understanding the meaning of Trust; Difference between intention competence, Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationshi Understanding the harmony in the society (society being an extension family): Resolution, Prosperity, fearlessness (trust) and co-existence comprehensive Human Goals, Visualizing a universal harmonious order society- Undivided Society, Universal Order- from family to world family.</li> </ul>	ail, ail, <b>nan-</b> ine ure nip. and een CO3 nip, of as in
Understanding human being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' - happin and physical facility, Understanding the Body as an instrument of 'I' (I be the doer, seer and enjoyer), Understanding the characteristics and activities 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sany and Health: correct appraisal of Physical needs, meaning of Prosperity indet	he ess ing of am ail

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010.

# **Reference Books**

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi

	-				
Course Code	20EE3551	Year	III	Semester(s)	Ι
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	NIL
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

### CONTROL SYSTEMS LAB

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Analyze the performance characteristics and working of Magnetic amplifier, DC & AC
	servo motors and synchros. (L4)
CO2	<b>Determine</b> the transfer functions of DC Motor and DC generator (L3)
CO3	<b>Demonstrate</b> the time response analysis and performance of PID controllers (L3)
CO4	Develop MATLAB programming and construct the truth table of logic gates using
	PLC (L3)
CO5	Conduct experiments as a team / individual by using equipment available in the
	laboratory
CO6	Make an effective <b>report</b> based on experiments

	<b>Contribution of Course Outcomes towards achievement of Program Outcomes</b>														
	&Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PSO1         PSO2														
CO1		3		3									2	1	
CO2	3			3									2	1	
CO3	3			3									2	1	
CO4	3		3	3	3						3	3	2	1	
CO5									3				1		
CO6										3			1		

	Syllabus											
Expt.	Contents	Mapped CO										
No.												
	Part-A (Any eight experiments)											
1	Time response of Second order system	CO1, CO3, CO5, CO6										
2	Characteristics of AC servo motor	CO1, CO5, CO6										
3	Effect of P, PD, PI, PID Controller on a second order systems	CO1, CO3, CO5, CO6										
4	Transfer function of DC motor	CO1, CO2, CO5, CO6										
5	Temperature controller using PID	CO1, CO3, CO5, CO6										
6	Characteristics of magnetic amplifiers	CO1, CO5, CO6										
7	Characteristics of Synchros	CO1, CO5, CO6										
8	Characteristics of DC servo motor	CO1, CO5, CO6										

9	Transfer function of DC generator	CO1, CO2, CO5, CO6
10	Programmable logic controller – Study and verification of truth	CO4, CO5, CO6
	tables of logic gates	
	Part-B (Any two experiments)	
11	Time response of first order systems for standard test signals	CO1, CO3, CO4, CO5,
	using MATLAB	CO6
12	Kalman's test of Controllability and Observability using MAT	CO4, CO5, CO6
	LAB.	
13	Bode Plot, Root locus for the transfer functions of systems	CO1, CO4, CO5, CO6
	using MATLAB.	
14	State space model for classical transfer function and vice versa	CO4, CO5, CO6
	using MATLAB – Verification.	

#### **Text Books**

 James C. Squire, Julie Phillips Brown, "Programming for Electrical Engineers: MATLAB and Spice", Academic Press; 1st edition, 2020.

2. JR.Hackworth & F.DHackworth Jr., "Programmable Logic Controllers-Programming Methods and Applications", Pearson, 1st edition 2003

## POWER ELECTRONICS LAB

Course Code	20EE3552	Year	III	Semester	Ι
Course	Professional	Branch	EEE	<b>Course Type</b>	Lab
Category	core				
Credits	1.5	L-T-P	0-0-3	Prerequisites	ED&AC Lab
Continuous Internal Evaluation	15	Semester End Evaluation	35	Total Marks	50

	Course Outcomes										
Upon	Upon successful completion of the course, the student will be able to										
CO1	Study and observe the characteristics of SCR MOSFET and IGBT. (L3)										
CO2	Analyze theoretically and practically Rectifiers and Choppers. (L4)										
CO3	Analyze theoretically and practically inverters. (L4)										
CO4	Analyze theoretically and practically AC to AC converters. (L4)										
CO5	Conduct experiments as a <b>team / individual</b> by using equipment available in the										
	laboratory										
CO6	Make an effective <b>report</b> based on experiments										

### **Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations** (3: High, 2: Medium,1: Low)

During	(onghi of correlations (3, ringh, 2, ricerani), r. 2000)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			3								2	2	1
CO2		3		3		1	1					2	2	1
CO3		3		3		1	1					2	2	1
CO4		3		3		1	1					2	2	1
CO5									3				2	1
CO6										3			2	1

	Syllabus	
Expt.	Contents	Mapped
No.		CO
	PART-A (Any Eight Experiments)	
1	Study of characteristics of SCR	CO1
2	Study of characteristics of MOSFET	CO5
3	Study of characteristics of IGBT	CO6
4	Single phase fully controlled bridge converter with R and RL	CO2
	loads	CO5
5	Three phase half-controlled bridge converter with RL-Load	CO6
6	VSI fed three phase induction motor drive	CO3
7	Single phase Series inverter	CO5
		CO6
8	Single phase AC Voltage controller with R and RL loads	CO4
9	Single phase cyclo-converter with R and RL loads	CO5

		CO6
10	IGBT based four quadrant chopper controlled DC motor drive	CO2
11	Buck Converter	CO5
		CO6
	PART-B:(Any Two Experiments)	·
12	Single phase dual converter with R, RL and RLE loads	CO2
		CO5
		CO6
13	Boost Converter	CO2
		CO5
		CO6
14	Single phase Parallel inverter	
15	Single phase bridge inverter	CO3
16	Cascaded H Bridge inverter	CO5
	Ŭ	CO6

	Learning Resources								
Гext	Books								
1.	P.S.Bhimbra, 'PowerElectronics', 5 th edition, Khanna Publications, 2018.								
2.	M.H. Rashid,' Power Electronic Circuits Devices and Applications',4th edition,								
	Pearson,2017.								

# JAVA PROGRAMMING

Course Code	208A8552	Year	III	Semester(s)	Ι
Course Category	Skill Oriented	Branch	EEE	Course Type	Lab
Credits	2	L-T-P	1-0-2	Prerequisites	Programming with C
Continuous Internal Evaluation:	-	Semester End Evaluation:	50	Total Marks:	50

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Apply object-oriented principles/ Java constructs for solving problems (L3)							
CO2	Implement programs as an individual on different IDE/ online platforms. (L3)							
CO3	Develop an effective report based on various programs implemented. (L3)							
CO4	Apply technical knowledge for a given problem and express with an Effective oral communication. (L3)							
CO5	Analyze outputs using given constraints/test cases. (L4)							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3											2	2	2
CO2	3													
CO3	3								3	3				
CO4	3													
CO5		2												
CO6	3											2	2	2

	Syllabus	
Expt No.	Contents	Mapped CO
1	Implement Java Programs by using Conditional Statements, Switch and loops with suitable examples.	CO1, CO2,CO3,CO4,CO5
2	Develop Java Programs Using 1D Arrays and 2D arrays.	CO1, CO2,CO3,CO4,CO5
3	Use String, String Buffer and String Tokenizer classes to develop Java programs.	CO1,CO2,CO3,CO4,CO5
4	Implement the concept of static variables, static methods and static block.	C01,C02,C03,C04,C05
5	Implement the concept of instantiation of objects using Classes.	CO1,CO2,CO3,CO4,CO5

6	Implement reusability concept through inheritance.	C01,C02,C03,C04,C05
7	Implement concept of Polymorphism usingmethod Overloading and overriding.	C01,C02,C03,C04,C05
8	Develop Java programs using Abstract Class to achieve Partial abstraction.	CO1,CO2,CO3,CO4,CO5
9	Use interfaces to develop Java programs with complete Abstraction.	C01,C02,C03,C04,C05
10	Create a package and access members from the package to Avoid naming conflicts.	CO1,CO2,CO3,CO4,CO5
11	Implement Exception handling to build robust programs.	C01,C02,C03,C04,C05
12	Develop Java programs using Multithreading for process Synchronization.	C01,C02,C03,C04,C05
13	Implement various data structures usingCollection Framework.	C01,C02,C03,C04,C05

Learning Resources								
Text Books								
1. Java - The Complete Reference, Herbert Schildt, Ninth Edition, 2014, McGraw-Hill.								
2. Introduction to Java Programming 10 th Edition by Y. Daniel Liang Pearson.								
e-Resources & other digital material								
1. https://www.javatpoint.com/java-tutorial								
2. <u>http://www.learnjavaonline.org/</u>								
3. <u>http://vtc.internshala.com/signup/course_details2.php?course=java101</u>								
4. https://nptel.ac.in/courses/106/105/106105191/								
5. <u>https://www.udemy.com/course/java-tutorial/</u>								
6. <u>https://www.decodejava.com/</u>								

<u>https://www.codecademy.com/learn/learn-java</u>
 <u>https://www.w3schools.com/java/</u>

# COMPUTER AIDED POWER SYSTEMS ANALYSIS

Course Code	20EE6501A	Year	III	Semester	Ι
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
	Upon successful completion of the course, the student will be able to							
CO1	<b>Understand</b> the incidence matrices, power system faults, power system security and stability.(L2)							
CO2	<b>Apply</b> the knowledge of graph theory, form the incidence and network matrices using singular transformation and bus impedance matrix ( <b>L3</b> ).							
CO3	Analyze the power system faults using Z-bus. (L4)							
<b>CO4</b>	<b>Apply</b> numerical integration methods, sensitivity factors for stability and contingency analysis. <b>(L3)</b>							
CO5	Analyze the stability and security of the power system. (L4)							
<b>CO6</b>	Submit a report on incidence matrices, fault analysis, power system stability and security.							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3		3		3									2	1
CO4	3											1	2	1
CO5		3					1						2	1
CO6						1		1	3	3				

	SYLLABUS						
Unit No.	Contents	Mapped CO					
Ι	<b>Network Topology</b> Introduction, graphs, incidence matrices, primitive matrices, formation of network matrices by singular transformation, examples of formation of incidence matrices.	CO 1 CO 2 CO 6					
II	Algorithms for formation of Z-bus matrix Step by Step algorithm for formation of Z-bus-Addition of branch, addition of link with and without mutual impedance, Modification of Z-bus matrix for changes in the network, numerical Problems.	CO 1 CO 2 CO 6					
III	<b>Short circuit Calculations</b> Short circuit calculations using $Z_{Bus}$ , short circuit calculations for balanced three phase network using $Z_{Bus}$ –Transformation to symmetrical components - $Z_{Bu_s}^{012}$ , $Z_f^{abc}$ , $Y_f^{abc}$ , $Z_f^{012}$ , $Y_f^{012}$ matrices for various faults.	CO 1 CO 3 CO 6					

IV	Security and Contingency Analysis Introduction, factors affecting power system security, contingency analysis- linear sensitivity factors, Contingency Analysis using DC Power flow model.	CO 1 CO 4 CO 5 CO 6
V	<b>Stability Analysis</b> Classification of power system stability, classical model of synchronous machines (SMIB) - excitation and power system stabilizer (PSS) representation. Numerical integration methods -Runge Kutta fourth order methods and modified Euler's method. Transient stability algorithm using modified Euler's method and fourth order Runge Kutta method.	CO 1 CO 4 CO 5 CO 6

#### Learning Resources Text Books:

1. Stagg G.Ward, El-Abiad, Computer methods in power system analysis, McGraw Hill ISE. 1987

- 2. K.U.Rao, Computer Techniques and Models in Power Systems, I.K.International Pvt.Ltd,2013 Reference Books:
- 1. Singh, L. Advanced Power System Analysis and Dynamics, New Age International (P) Ltd, New Delhi, 2001, 5th Edition.
- 2. HadiSaadat, Power system analysis, MH publications, 2nd Edition, 2009.
- 3. Pai, M. A, Computer Techniques in Power System Analysis, MH Publishers, 2nd edition, 2006.
- 4. D.P.Kothari and I.J.Nagrath, Modern power system analysis, MH publications, 4th Edition, 2011.

### **E-Resources:**

- 1. https://archive.nptel.ac.in/courses/108/105/108105067/
- 2. <u>https://nptel.ac.in/courses/108107127</u>

Course Code	20EE6501B	Year	III	Semester(s)	Ι
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

### **REACTIVE POWER CONTROL IN ELECTRIC SYSTEMS**

	Course Outcomes					
Upon successful completion of the course, the student will be able to						
CO1	Understand necessity of reactive power compensation.( L2)					
CO2	Apply various types of reactive power compensation in transmission systems.(L3)					
CO3	Analyze the impact of various reactive power compensation methods (L4)					
CO4	<b>Demonstrate</b> reactive power coordination and management in power system. (L3)					
CO5	Investigate importance of reactive power compensation and submit a report					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3		1	2	1	2							3	1
CO3		3	1	3							3		3	1
CO4	2					2	1	1			1		3	3
CO5	3			3					3	3		3	3	1

SYLLABUS						
Unit	Contents	Mapped				
No.		CO				
Ι	Load Compensation:	CO1				
	Objectives and specifications – reactive power characteristics – inductive and	CO2				
	capacitive approximate biasing – Load compensator as a voltage regulator –	CO3				
	phase balancing and power factor correction of unsymmetrical loads-	CO5				
	examples					
II	Steady-State Reactive Power Compensation in Transmission System:	CO1				
	Uncompensated line - types of compensation - Passive shunt, series and	CO2				
	dynamic shunt compensation –examples	CO3				
		CO5				
III	Reactive Power Coordination:					
	Objective – Mathematical modeling – Operation planning – transmission	CO1				
	benefits – Role of capacitor in quality control of Electric power – disturbance	CO3				
	-steady state variations -frequency -Harmonics, radio frequency interference	CO4				
	and electromagnetic interference.	CO5				

IV	Demand Side Management:	CO1
	Load patterns – basic methods load shaping –System losses –loss reduction	CO2
	methods – examples	CO3
	Distribution Side Management	CO4
	Reactive power planning – objectives – Methods followed by the Electricity	CO5
	boards in India.	
V	User Side Reactive Power Management:	CO1
	KVAR requirements for domestic appliances – Purpose of using capacitors –	CO2
	selection of capacitors – deciding factors – types of available capacitors,	CO3
	characteristics and Limitations	CO4
		CO5

### **Text Books**

1. T.J.E. Miller, "Reactive power control in Electric power systems", John Wiley and sons, 2017.

2. D. M. Tagare,"Reactive power Management", Tata McGraw Hill, 2004.

### **Reference Books**

1. Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just "Reactive Power Compensation: A Practical Guide, Wilely publication, 2012

# e-Resources

1. https://nptel.ac.in/courses/108107113

# POWER SYSTEM DYNAMICS AND CONTROL

Course Code	20EE6501C	Year	III	Semester(s)	Ι
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Electrical Machines -II
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon succ	Upon successful completion of the course, the student will be able to				
CO1	<b>Understand</b> the power system stability and its impact on the system. (L2)				
$CO^{2}$	Analyze theory and practice of modeling main power system components, such as				
02	synchronous machines. (L4)				
CO3	Interpret the results of system stability studies by the concepts of modelling and				
003	simulating the dynamic phenomena of power systems. (L3)				
<b>CO4</b>	Analyze the power system small signal and dynamic stability. (L4)				
CO5	Establish the concept of Power System Stabilizers and excitor with AVR. (L4)				
CO6	Learn the fundamental dynamic behavior and control of power				
	systems to perform basic stability analysis and submit the report.				

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3: High, 2: Medium, 1: Low)													
	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01														
C02	2	3	3			2	2					2	2	2
C03	3	3	2	2				2				2	2	2
C04		3			3							2	2	2
C05		3	2								2	2	2	2
C06	3	3							3	3		3	2	2

SYLLABUS							
Unit	Unit Contents						
No.		СО					
Ι	Introduction to Power System Operations:						
	Introduction to power system stability. Power System Operations and	CO1,					
	Control. Stability problems in Power System. Impact on Power System	CO3,					
	Operations and control.						
II	Synchronous Machine Theory and Modelling:	CO1,					
	Armature and field structure, parks transformation, machine with	CO2,					
	multiple pole pairs-mathematical description, d-q transformation, per	СО3,					
	unit representation, equivalent circuit for d-q axes, steady state analysis	CO6					

	voltage-current and flux linkage, phasor representation.	
III	Analysis of Single Machine System:	
	Classification of Power System Stability and Power System security states and state diagram. Swing equation and its block diagram representation for stability studies. Characteristic equation and application of Routh Hurwitz criterion for small signal stability. Synchronous and damping torque analysis, small signal model and state equations of SMIB System.	CO1, CO3, CO4, CO6
IV	<b>Dynamic Stability:</b> System response to small disturbances - linear model of the unregulated synchronous machine and its modes of oscillation - regulated synchronous machine - distribution of power impact - linearization of the load equation for the one machine problem – simplified linear model - effect of excitation on dynamic stability - approximate system representation - supplementary stabilizing signals - dynamic performance measure - small signal performance measures.	CO1, CO3, CO4, CO6
V	AVR and PSS: Phillips Heffron model, block diagram representation with exciter and AVR (Automatic Voltage Regulator) and effect of AVR on synchronising and damping torque components. Power System Stabilizer: structure and tuning of Power System Stabilizer (PSS), block diagram with and without PSS.	CO1, CO3, CO5, CO6

1.	P.M. Anderson and A. A. Fouad, 'Power System Control and Stability', IEEE Press
	Power Engineering Series second edition, 2002.

2. P. Kundur, 'Power System Stability and Control', McGraw Hill Inc. first edition, 2006.

#### **Reference Books**

**Text Books** 

- 1. Power System Dynamics Stability and Control, K. R. Padiyar, BS Publications, Hyderabad, first edition, 2006
- 2. R. Ramanujam, "Power System Dynamics Analysis and Simulation", PHI, first edition, 2009.
- 3. M.A.Pai and W.Sauer, 'Power System Dynamics and Stability', Pearson Education Asia, India, first edition, 2005.
- 4. J. Machowski, J. Bialek & J. R. W. Bumby, Power System Dynamics and Stability, John Wiley & Sons, 3rd Edition 2020
- 5. E. W. Kimbark, Power System Stability, Vol. I, II& III, John Wiley & Sons, New York 2007
- 6. L. P. Singh, Advanced Power System Analysis and Dynamics, New Age International Private Limited; Sixth edition 2012

### e-Resources

1. https://nptel.ac.in/courses/108101004

# EHV AC TRANSMISSION

Course Code	20EE6501D	Year	III	Semester(s)	Ι
Course Category	Honor	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Electrical Power Generation, Transmission & Distribution
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon su	Upon successful completion of the course, the student will be able to							
CO1	Understand the basic concepts of EHV AC transmission system (L2)							
CO2	Analyze the various transmission line parameters (L4)							
CO3	Apply the basic knowledge of voltage gradients of conductor and effect of electro							
	static field on EHV transmission lines (L3)							
CO4	Analyze corona effects on EHV transmission lines (L4)							
CO5	Identify various compensating devices for voltage control (L3)							
CO6	Get the ability to understand the concepts of EHV AC transmission system and submit a report							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2		3						2					2	2
CO3	2						3						2	2
CO4		3				2							2	2
CO5	3										2	2	2	2
CO6									3	3			2	2

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	<b>Introduction:</b> Necessity of EHV AC transmission, advantages and problems, power handling capacity and line losses. Mechanical considerations. Resistance of conductors, Temperature rise of conductors and current-carrying capacity, properties of bundled conductors.	CO 1 CO 2 CO 6
II	Line and Ground Parameters: Inductance of EHV line configurations, Line capacitance calculation, Sequence inductances and capacitances, Line parameters for modes of propagation, Resistance and inductance of ground return.	CO 1 CO 2 CO 6
Ш	Voltage Gradients of Conductors and Electro Static Field: Electrostatics, Field of sphere gap, Field of line changes and properties, Charge – potential relations for multi-conductors lines. Surface voltage gradient on conductors, Effect of high electro static field on humans, animals and plants.	CO 1 CO 3 CO 6
IV V	<ul> <li>Corona Effects: Corona loss formulas, Charge-voltage diagram, Audible noise (AN) generation and characteristics, Limits and measurements AN, Relation between single phase and three phase AN levels. Radio interference (RI), Corona pulses generation, properties and limits of RI</li> <li>Voltage Control: Generalized constants, Power circle diagram and its use, Voltage control using synchronous condensers, Cascade connection of components, Sub synchronous resonance in series capacitor compensated</li> </ul>	CO 1 CO 4 CO 6 CO 1 CO 5 CO 6
	lines and static VAR compensating system.	

- Text Books
  1. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering" New Age International Publishers, Fourth Edition, 2011
- 2. S. Rao, "EHV-AC, HVDC Transmission & Distribution Engineering" Khanna Publishers, Third Edition, 2008

### **Reference Books**

1. E. Kuffel, W. S. Zaengl, J. Kuffel, "High Voltage Engineering Fundamentals" Elsevier, Second Edition, 2000.

#### Web Links

- 1. https://nptel.ac.in/courses/108108099
- 2. <u>http://files.hostgator.co.in/hostgator253199/file/extrahighvoltageactransmissionbybegamudre.</u> <u>pdf</u>

Course Code	20CS5501	Year	III	Semester(s)	Ι
Course Category	Minor in CSE	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# DATASTRUCTURES AND ALGORITHMS USING JAVA

	Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to								
CO1	Understand the basic concepts of data structures and algorithms. (L2)								
CO2	Apply a suitable data structure to solve a given problem. (L3)								
CO3	Analyze the given problem and select suitable algorithm design techniqueto provide a feasible solution. (L4)								
CO4	Analyze the time and space complexity of a given problem. (L4)								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												1	1
CO2														
CO3	3								3	3			2	2
CO4		2							1	1		1	1	1

	SYLLABUS							
Unit	Contents	Mapped						
No.		CO						
	Introduction to algorithms: Notion of Algorithm, Fundamentals of							
	Algorithmic Problem Solving. Algorithm Specification, Asymptotic							
	Notations, and Basic Efficiency Classes.							
т	Introduction to data structures:	CO1.						
1	Linear - Introduction to linked list. Singly-linked list, Single Circular	CO2,						
	linked list, and doubly linked list. Time and space complexity of	CO4						
	operations.							
	Stacks, Queue: Definition, operations: array implementation of stack and							
	queue, Circular Queue. Time and space complexity of	CO1,						
	operations.	CO2,						
II		CO4						
	Trees: Introduction- Terminology, representation of trees. Binary tree							
	traversal - in order, Preorder, post order. Time and space complexity of							
	operations.							
тт	Binary search trees - Definition, searching BST, insert into BST, delete	CO1.						
111	from a BST, Height of a BST.	CO2,						
	<b>Graph</b> : Adjacency matrix and list representation, BFS and DFS traversal. Time and space complexity of operations.	CO4						
----	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------						
IV	<b>Divide and Conquer</b> : Binary search, Merge sort, Quick Sort. <b>Greedy</b> <b>Method:</b> Fractional knapsack problem, Single SourceShortest path (Dijkstra's). Time and space complexities the problems.	CO1, CO3, CO4						
V	<b>Dynamic Programming</b> : 0/1 Knapsack problem, All-pairs shortest paths, Travelling salesman problem. Time and space complexities of the problems.	CO1, CO3, CO4						

Learning Resources
Text Books
1. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition,
2002, Pearson.
2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein, Third Edition, 2010, PHI.
3. Data Structures and Algorithms Made Easy by Narasimha Karumanchi, 2020,
CareerMonk Publication
4. Introduction to the Design & Analysis of Algorithms, Anany Levitin, Third Edition,
5. 2011, Pearson Education.
Reference Books
1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein, Third Edition, 2012, MIT Press.
2. Fundamentals of computer algorithms, Ellis Horowitz, Sartaj Sahni, S. Rajasekharan,
Second Edition, 2008, Universities Press.
3. Fundamental of Data Structures in C, Horowitz, Sahani, Anderson-Freed, Second
Edition, 2008, Universities Press.
4. Classic Data Structures, Debasis Samantha, Second Edition, 2009, PHI.
E- Resources & other digital material
1. <u>https://www.geeksforgeeks.org/data-structures/</u>
2. <u>https://www.youtube.com/watch?v=0IAPZzGSbME</u>
3. https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
$4. \underline{https://www.youtube.com/watch?v=S47aSEqm_0I\&list=PLgj_VZKxRKrxgFyOutPJpoLFB}$
<u>aQMOpK-</u>
5. https://www.geeksforgeeks.org/fundamentals-of-algorithms/
6. https://www.javatpoint.com/collections-in-java

Course Code	20CS5551	Year	III	Semester(s)	Ι				
Course Category	Minor in CSE	Branch	EEE	CourseType	Practical				
Credits	1	L-T-P	0-0-2	Prerequisites	Basic Java				
					Programming				
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50				

## ADVANCED JAVA PROGRAMMING LAB

	Course Outcomes					
Upon successful completion of the course, the student will be able to						
CO1	Apply generics, collections, lamda expressions and regular expressions to solve					
	problems in an efficient way. (L3)					
CO2	Implement programs as an individual on different IDEs/ online platforms. (L3)					
CO3	Develop an effective report based on various tasks that are implemented. (L3)					
CO4	Apply technical knowledge for a given problem and express with an effective					
	oral communication. (L3)					
CO5	Analyze outputs using given constraints/test cases. (L4)					

### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	Suchgen of correlations (S.Ingli, 2. McCulum, 1.Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3											2		2
CO2					3				3					
CO3	3								3	3				
CO4	3								3	3				
CO5		3												

Expt	CONTENTS	Mapped CO's
.No.		
1.	Demonstrate generic methods with suitable examples.	CO1,CO2,CO3,CO4 ,CO5
2.	Develop a generic class with suitable examples.	CO1,CO2,CO3,CO4 ,CO5
3.	Develop a generic program for ordered collection of elements.	CO1,CO2,CO3,CO4 ,CO5
4.	Implement an efficient data structure for storing and processing non-duplicate elements.	CO1,CO2,CO3,CO4 ,CO5
5.	Implement a Map-data structure that provides a quick look up to retrieve a value using a key.	CO1,CO2,CO3,CO4 ,CO5
6.	Use a data structure to prevent data corruption, when two or more threads running concurrently.	CO1,CO2,CO3,CO4 ,CO5

7.	Take a Java file that contains number of methods. Replace them with lambda expressions. How many lines did it save? Was the code easier to read? Were you able to use method references?	CO1,CO2,CO3,CO4 ,CO5
8.	Implement various applications using regular expressions.	CO1,CO2,CO3,CO4 ,CO5

1. The Java Complete Reference, Herbert Scheldt, 10/e, TMH Publications, 2018.

### **Reference Books**

**Text Books** 

- 1. Java 8 in Action: Lambdas, streams, and functional-style programming, Manning publications.
- 2. Java 9 Regular Expressions by Anubhava Srivastava, Packt Publishing.
- 3. Java generics and collections by Naftalin and Philip Wadler, O'Reilly.

# E- Resources & other digital material

- 1. https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
- 2. <u>https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html</u>
- 3. https://www.javatpoint.com/generics-in-java
- 4. <u>https://www.javatpoint.com/collections-in-java</u>

Course Code	20IT5501	Year	III	Semester(s)	Ι					
Course Category	Minor in IT	Branch	EEE	Course Type	Theory					
Credits	4	L-T-P	4-0-0	Prerequisites	NIL					
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100					

### **COMPUTER NETWORKS**

	Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to						
CO1	Understand the basics of computer networks and the functions of OSI and TCP/IP						
	reference model. (L2)						
CO2	Analyze various protocols in Data link layer, Transport Layer, andtheir mechanisms.						
	(L3)						
CO3	Implement routing and congestion control algorithms. (L3)						
CO4	Analyze the real applications like electronic mail, www and multimedia. (L3)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													3	
	3													
CO2	3	3											3	
CO3			3				3						3	
CO4		3											3	

SYLLABUS					
Unit No.	Contents	Mapped CO			
I	<ul> <li>Introduction: Uses of Computer Networks, Network hardware, Network software, Networks Topologies, OSI, TCP/IP Reference models.</li> <li>Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless transmission.</li> </ul>	CO1			
П	<ul> <li>Data link layer: Design issues, framing, Error detection and correction.</li> <li>Elementary data link protocols: simplex protocol, A simplex stop and waitprotocol for an error-free channel, A simplex stop and wait protocol for noisychannel.</li> <li>Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat.</li> </ul>	CO1,CO2			
	<b>Network Layer:</b> Design issues, Routing algorithms: shortest path routing, distance vector routing, Link State routing, Broadcast routing, Multicast routing.	CO1,CO3			

III	<b>Congestion Control Algorithms</b> , Internetworking, The Network layer in the internet.	
IV	<b>Transport Layer:</b> The transport service, Elements of Transport protocols, The internet transport protocols: UDP, The internet transport protocols: TCP.	CO1,CO2
V	<b>Application Layer</b> : Domain name system, Electronic Mail; The World WEB, Streaming audio and video.	CO1,CO4

1 ex	A BOOKS
1.	Computer Networks Andrew S Tanenbaum, David. j. Wetherall, 5thEdition. Pearson
	Education/PHI
Ref	erence Books
1	An Engineering Approach to Computer Networks-S Keshay 2 nd Edition Pearson Education

An Engineering Approach to Computer Networks-S. Keshav, 2ndEdition, Pearson Education. 1.

2. Computer Networks, A Top-Down Approach – Behrouz A Forouzan, FirouzMosharraf.

3. Data Communications and Networking – Behrouz A. Forouzan. Third Edition TMH.

## E- Resources & other digital material

1

1. https://www.youtube.com/watch?v=O--rkQNKqls&list=PLbRMhDVUMngfpeFloB7kyiA40EptH1up

Course Code	20EC5501	Year	III	Semester(s)	Ι
Course Category	Minor in ECE	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Digital Logic
					Design
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# DIGITAL DESIGN USING VERILOG HDL

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Understand the language constructs and programming fundamentals of Verilog HDL. (L2)						
CO2	Choose the suitable abstraction level for a particular digital design (L3).						
CO3	Construct Combinational and sequential circuits in different modelling styles using Verilog HDL (L3).						
CO4	Analyse and Verify the functionality of digital circuits/systems using test						
	benches (L4).						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2				
CO2	2									2				
CO3	2								2	2		2		2
CO4		3							2	2		2		2

	SYLLABUS					
Unit	Contents	Mapped				
No.		CO				
	Introduction to Verilog HDL: Verilog as HDL, Levels of Design					
I	Description, Concurrency, Program structure, Top-down and Bottom- up	CO1,				
	design methodology, differences between modules and module	CO2				
	instances, parts of a simulation, design block, stimulus block, Verilog					
	Data types and Operators, system tasks, compiler directives.0					
	Gate-Level Modelling: Modelling using basic Verilog gate Primitives,	CO1,				
II	Description of and/or and buf/not type gates, rise, fall and turn-off delays,	CO3				
	min, max, and typical delays, Design of Decoders, Multiplexers, Flip-					
	flops, Registers & Counters in Gate-level Modelling.					
	Dataflow Modelling: Continuous assignments, Delay specification,	CO1,				
111	expressions, operators, Design of Decoders, Multiplexers, Flip-flops,	CO3				
	Registers & Counters in dataflow model.					
	Behavioral Modelling: Procedural Assignments, Initial and always					
IV	blocks, blocking and non-blocking statements, delay control, conditional	CO1,				
	statements, Multiway branching, loops, sequential and parallel blocks,	CO3				
	Design of Decoders, Multiplexers, Flip-flops, Registers					

	& Counters in Behavioral model.	
V	<b>Components Test and Verification:</b> Test Bench - Combinational Circuits Testing, Sequential Circuits Testing, Test Bench Techniques, Design Verification, Assertion Verification.	CO1, CO4

1. Samir Palnitkar-Verilog HDL: A Guide to Digital Design and Synthesis, Pearson Education, 2nd Ed., 2009.

2. Michel D. Ciletti- Advanced Digital Design with Verilog HDL,2nd Ed., PHI, 2009 **Reference Books** 

1 Padmanabhan, Tripura Sundari -Design through Verilog HDL, Wiley, 2016

2. S.Brown, Zvonko – Vranesic, Fundamentals of Digital Logic with Verilog Design,

TMH,3rd Ed., 2014.

**Text Books** 

# E- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit

/frame/index.html

SERVER MAD HETCHION DE TIELET ONTOT								
Course Code	20EC5502	Year	III	Semester(s)	Ι			
Course Category	Minor in IoT	Branch	EEE	Course Type	Theory			
Credits	4	L-T-P	3-1-0	Prerequisites	NIL			
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100			

# SENSORS AND ACTUATOR DEVICES FOR IOT

Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to					
CO1	<b>Illustrate</b> the working principles of different types of sensors and actuators (L2)					
CO2	Analyse the phenomena that define behaviour of various sensors and actuators. (L4)					
CO3	Apply the concepts in common methods for converting a physical parameter into an electrical quantity. (L3)					
CO4	<b>Identify</b> suitable sensors and actuator for real time applications. (L3)					

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									1				1
CO2		3								2				2
CO3	3									2				2
CO4	3									2				2

SYLLABUS						
Unit	Contents	Mapped				
No.		CO				
I	<b>Sensors/Transducers</b> , Principles, Classification, Characterization. Mechanical and Electromechanical Sensors: Introduction, Resistive Potentiometer, Inductive Sensors, Capacitive Sensors- Parallel plate & serrated plate types, Ultrasonic Sensors.	CO1- CO3				
Π	<b>Thermal Sensors</b> : Introduction, Helium Low Temperature Thermometer, Nuclear Thermometer, Magnetic Thermometer, Junction Semiconductor Types, Magnetic Sensors: Introduction, Sensors and the Principles Behind, Force & displacement Sensors.	CO1- CO3				
III	<b>Radiation Sensors</b> : Introduction – Basic Characteristics – Types of Photo sensistors /Photo detectors– X-ray and Nuclear Radiation Sensors – Fiber Optic Sensors.	CO1- CO3				
IV	Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters, , Information Coding/Processing, Data Communication, Standards for Smart Sensor Interface, the Automation. Sensors Applications: Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Medical Diagnostic Sensors, Sensors for Manufacturing, Sensors for environmental Monitoring	CO1- CO4				

<b>T</b> 7	Actuators: Pneumatic and Hydraulic Actuation Systems, Valves, Rotary	CO1,
V	actuators, Mechanical Actuation Systems Electrical Actuation Systems.	CO2,

COI,	
CO2,	
CO4	

Learning Resources
Text Books
1. D. Patranabis-Sensors and Transducers, PHI Learning Private Limited.
2. W. Bolton-Mechatronics, Pearson Education Limited.
Reference Books
1. Patranabis-Sensors and Actuators- 2 nd Ed., PHI, 2013.

2. Robert H. Bishop-The Mechatronics Handbook, 2nd Ed., Mechatronic Systems, Sensorsand Actuators, fundamentals and modelling

# E- Resources & other digital material

1. https://nptel.ac.in/content/syllabus_pdf/108108147.pdf

Course Code	20ME5501	Year	III	Semester(s)	Ι					
Course Category	Minor in Automobile Engineering	Branch	EEE	Course Type	Theory					
Credits	4	L-T-P	3-1-0	Prerequisites	NIL					
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100					

# AUTOMOTIVE TRANSMISSION SYSTEMS

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Understand the fundamentals and existing technology of various components of						
	Automobiles (L2)						
CO2	Illustrate the significance, operational functions of Clutch and Geartransmission						
	systems. (L3)						
CO3	Contrast the common types of special transmission and drive axlesused in heavy						
	duty commercial vehicles. (L4)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3									2	2	1
CO2	3		3									2	2	1
CO3	3		3									2	2	1

	SYLLABUS					
Unit	Contents	Mapped				
NO.		CO				
I	<b>CLUTCH:</b> Necessity of clutch in an automobile, different types of clutches, friction clutches namely Single plate clutch, multi plate clutch, cone clutch, centrifugal clutch, electromagnetic clutch, hydraulic clutches, <b>Clutch adjustment</b> /troubles and their causes, requirements, Clutch materials, lining, Vacuum operated clutch, Fluid coupling	CO1, CO2				
II	<b>GEAR BOX:</b> The need for transmissions, Necessity of gear box, Desirable ratios of 3- speed & 4-speed gear boxes Constructional details of sliding-mesh gear box, constant-mesh gear box, synchromesh gear box, automatic and semi-automatic transmission, overdrive	CO1, CO2				
III	TORQUECONVERTERANDAUTOMATICTRANSMISSION:Principal of torque conversion, single, multi stage and polyphase torque converters, performance characteristics, constructional and operational details of typical hydraulic transmission drives. Automatic transmission: relative merits and demerits when compared to conventional transmission	CO1, CO2, CO3				

	epicyclic and hydromatic transmission continuously variable transmission.	
IV	<b>SPECIAL TRANSMISSION SYSTEMS:</b> Hydrostatic drives: principles, construction and working of hydrostatic drives, Janney Hydrostatic drive, advantages and limitations Electrical drives: principles of Ward Leonard system of control Modern electric drive for buses and performance characteristics, advantages and limitations	CO1, CO3
V	<b>DRIVE LINE:</b> Effects of driving thrust and torque reaction. Hotchkiss drive. Torque tube drive, radius rods. Propeller shaft Universal joints. Final drives – different types, double reaction final drive. Two speed rear axles. Rear axle construction – full floating, three quarter floating and semi-floating arrangements. Differential conventional type, no-slip type. Differential locks	CO1, CO3

Learning Resources						
Text Books						
1. Fischer and Pollack, "The automotive transmission book", Springer, 2014						
2. Light and Heavy Vehicle Technology, M.J. Nunney, Elsevier, Fourth Edition						
Reference Books						
1. Newton K and Steeds. W. "The Motor Vehicle", Butter Worth's & Co., Publishers Ltd,						
2001.						
2. Automatic vehicle transmission, John Wiley Publications 1995						
3. Crouse. W.H., Anglin. D.L., "Automotive Transmission and Power Trains						
construction ",McGraw-Hill						
4. Heldt P.M - Torque converters- Chilton Book Co1992						
E- Resources & other digital material						
1. <u>https://nptel.ac.in/courses/107/106/107106088/</u>						
2. <u>https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-de06</u>						

3.<u>https://nptel.ac.in/courses/116/102/116102012/</u>

Course Code	20ME5502	Year	III	Semester(s)	Ι					
Course Category	Minor in Digital Manufacturing	Branch	EEE	Course Type	Theory					
Credits	4	L-T-P	3-1-0	Prerequisites	Physics					
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100					

# **BASIC MANUFACTURING PROCESSES**

	Course Outcomes					
Upon sı	Upon successful completion of the course, the student will be able to					
CO1	Understand basic principles of various manufacturing process. (L2)					
CO2	Illustrate moulding and casting process. (L2)					
CO3	Discuss various metal forming processes. (L3)					
CO4	Identify various Metal joining process for different products (L3)					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		1							2		2	DS	DS
CO2	3		1							2		2	DS	DS
CO3	3		1							2		2	DS	DS
CO4	3		1							2		2	DS	DS

SYLLABUS					
Unit	Contents	Mapped			
No.		CO			
Ι	<ul> <li>INTRODUCTION TO FOUNDRY:</li> <li>Introduction: Definition, Classification of manufacturing processes. Metals cast in the foundry-classification, factors that determine the selection of a casting alloy. Introduction to casting process &amp; steps involved.</li> <li>Patterns: Definition, classification, materials used for pattern, various pattern allowances and their importance.</li> <li>Sand Molding: Basic steps in mold preparation, materials used for mould, typesof molds.</li> <li>Special casting processes: Shell moulding, Investment casting, die casting, Centrifugal casting, Casting defects and remedies. Advantages and applications of casting.</li> </ul>	CO1, CO2			
II	<ul> <li>Introduction to metal forming processes         <ul> <li>classification of metal forming processes. Hot working &amp; cold working of metals.</li> </ul> </li> <li>Forging: Classification of forging processes. Forging machines         <ul> <li>equipment. Expressions for forging pressures&amp; load in open die             forging and closed die</li> </ul> </li> </ul>	CO1, CO3			

	forging by slab analysis. Smith forging, drop forging & press forging. ForgingEquipment, Defects in forging.	
ш	<ul> <li>Rolling: Classification of rolling processes. Types of rolling mills, Variables of rolling process, expression for rolling load. Roll separating force, Rolling defects.</li> <li>Drawing &amp; Extrusion: Drawing of wires, rods &amp; drawing pipes, Variables of drawing process. Difference between extrusion. Types of Extrusion: Direct, reverse, impact, hydrostatic extrusion. Dies for extrusion stock penetration.</li> </ul>	CO1, CO3
	Extrusion ratio of force equipment (with and without friction)	
IV	Sheet Metal Operations: Blanking, piercing, punching, drawing, draw ratio, drawing force, variables in Drawing, Trimming, and Shearing. Bending - types of bending dies, bending force calculation, Embossing and coining. Types of dies: Progressive, compound and combination dies.	CO1, CO 3
v	Metal Joining Processes: Classification of welding processes, types of welds and welded joints, Arc Welding, Submerged Arc Welding, Gas Tungsten Arc Welding, Gas Metal Arc Welding, Electron Beam Welding, Laser Welding, Forge welding, Resistance welding, Friction welding, Explosive welding, Thermit welding and Plasma Arc welding. Soldering and brazing. Adhesive Bonding. Welding defects: causes and remedies	CO1, CO 4

### **Text Books**

# 1. Amitabha Ghosh and Mallick A. K., Manufacturing Science. Affiliated East-West Press

- Pvt. Ltd.2010.2. M. P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, Third edition. Wiley India Private Limited, 2009.
- 3. S. Kalpakjian, ManufacturingProcesses for Engineering Materials, Fifth edition. PearsonEducation, 2009.

### **Reference Books**

1. G. K. Lal and S. K. Choudhury, Fundamentals of Manufacturing Process, 2009. Boca Raton, FL:CRC Press, 2011.

2. J.P. Holman, Experimental Methods for Engineers, McGraw Hills Int. Edition.

# E- Resources & other digital material

1.https://nptel.ac.in/courses/112107219

Course Code	20CE5501A	Year	III	Semester(s)	Ι
Course Category	Minor in Civil Engineering	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	20CE3404- Mechanics of Solids
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# **ANALYSIS OF STRUCTURES**

	Course Outcomes								
Upon su	Upon successful completion of the course, the student will be able to								
CO1	<b>Evaluate</b> the slopes and deflection in beams and pin jointed frames. (L5)								
CO2	Evaluate the fixed end moments in fixed beams and can analyze two span continuous								
	beams by slope deflection method. (L5)								
CO3	Analyze the two span continuous beams by Moment distribution Method and Kani's								
	method. (L4)								
CO4	<b>Evaluate</b> the stresses for both concentrically loaded and eccentrically loaded Columns. (L5)								
CO5	<b>Evaluate</b> the stress strain behavior of both the thin and thick cylinders. (L5)								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2			2	3							2	3
CO2	2	2			2	3							2	3
CO3	3	3			3	3							3	3
CO4	2	2			2	3							2	3
CO5	2	2			2	3							2	3

	SYLLABUS							
Unit	Contents							
No.		CO						
	Deflection of Statically Determinate Structures:							
Ι	Introduction, Pure bending, Relation between curvature, slope and deflection, Deflection curves, Maculay's Method, Moment area method, Slopes and deflection for cantilevers and simply supported beams.	CO1						
	<b>Deflection Of pin jointed frames:</b> Deflection of trusses by Unit load method (having 9 members or less)							
	Analysis of Indeterminate Beams							
	Fixed beams: Shear force and bending moment diagrams for Fixed							
т	beams subjected to U.D.load, central point load, eccentric point load.							
11	Number of point loads, uniformly varying load, couple and combination	CO2.						
	of loads, effect of sinking of support, effect of rotation of a support.							
	Two span continuous beams: Shear force and bending moment diagrams							

		Γ					
	for two span continuous beams with and without sinking of supports using Slope deflection method.						
	Analysis of two span continuous beams						
	Moment distribution method: Shear force and bending moment						
	diagrams for two span continuous beams with and without sinking of	CO3					
ш	supports using MomentDistribution Method. <b>Kani's method</b> : Shear force and bending moment diagrams for two span continuous beams with and without sinking of supports using Kani's Method.						
	Columns and Struts: Introduction, Column with one end free and other						
	fixed, Column with both ends hinged, column with both ends fixed,						
	column with one end fixed and the other hinged, Limitation of Euler's						
<b>TX</b> 7	formula, column carrying eccentric load, Rankine-Gordon formula,						
IV	Perry's formula						
	<b>Combined bending and direct stresses</b> –Introduction, Limit of eccentricity for no tension in the section, kernel of a section for rectangular, circular sections.						
	Thin Cylinders - Introduction, Stresses and strains in thin cylinders,						
	volumetricchange in cylinder.	COL					
V	Thick cylinders: Thick cylinders subjected to internal pressure and	CO5					
	externalpressure, compound cylinders.						

Tex	t Books	
1.	Pandit.G,	Gupta.S and Gupta.R, Theory of Structures Vol.I & II, McGrawHill Education,
	2017.	

2. V.N Vazirani and M.M Ratwani, Analysis of Structures Vol-II, KhannaPublishers, 2012 **Reference Books** 

### 1. C.K.Wang, Statically Indeterminate Structures, TataMcGrawHill, 2010.

2. R.C. Hibbeler, Structural Analysis, 6/e, Pearson, 2011.

E- Resources & other digital material

1. https://nptel.ac.in/courses/105101085/25-31

2. https://onlinecourses.nptel.ac.in/noc17_ce25/preview

3. <u>https://www.edx.org/learn/structural-engineering</u>

Course Code	20CE5501B	Year	III	Semester(s)	Ι
Course Category	Minor in Civil Engineering	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	20BS1101 – Engineering Mathematics – I
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

### TRANSPORTATION ENGINEERING

	Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to								
CO1	<b>Choose</b> the highway development and planning in India. (L3)								
CO2	Analyze geometric design of highway alignment and management of traffic. (L4)								
CO3	<b>Demonstrate</b> traffic intersection and choose material for highway. (L3)								
CO4	<b>Discriminate</b> with the design procedures of flexible and rigid pavements. (L4)								
CO5	Focus on the construction and maintenance issues related to highways. (L4)								

### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2											2	2
CO2	2	2											2	3
CO3	3	3											3	2
CO4	2	2			2	3						3	2	3
CO5	2	2											2	3

	SYLLABUS							
Unit	Contents							
No.		СО						
	HIGHWAY DEVELOPMENT							
	Highway development in India-Highway Alignment- Factors affecting							
	Alignment-Engineering Surveys – Drawings and Reports.	CO1						
Ι	HIGHWAY PLANNING							
	Necessity for Highway Planning- Different Road Development Plans-							
	Classification of Roads- Road Network Patterns – Planning Surveys.							
	HIGHWAY GEOMETIC DESIGN							
	Importance of Geometric Design- Highway Cross Section Elements-							
	Stopping sight Distance, Overtaking Sight Distance and Intermediate							
	Sight Distance- Design of Super elevation and Extra widening- Design of	CO2						
Π	Vertical alignment-Gradients- Vertical curves.							
	TRAFFIC ENGINEERING AND MANAGEMENT							
	Traffic Volume Studies- Speed studies- Parking Studies - Road							
	Accidents-Causes and							
	Preventive measures – Road Traffic Signs – Types – Road markings-							
	Types of Road Markings							

	INTERSECTION DESIGN							
	Types of Intersections -Traffic Islands - Design of Traffic Signals -							
	Webster Method –IRC Method. Types of Grade Separated Intersections-							
	Rotary Intersection –Advantages and Disadvantages of Rotary	CO3						
тт	Intersection.							
111	HIGHWAY MATERIALS							
	Subgrade soil: California Bearing Ratio – Modulus of Subgrade Reaction.							
	Stone aggregates: Tests for Road Aggregates – Bituminous Materials:							
	Tests on Bitumen – Marshall Method of Mix Design.							
	DESIGN OF FLEXIBLE PAVEMENTS							
	Objects & Requirements of pavements – Types – Functions of							
	pavement components –Design factors – Flexible Pavement Design	<b>CO4</b>						
IV	Methods – CBR method – IRC method <b>DESIGN OF RIGID</b>							
1,	PAVEMENTS							
	Design Considerations – wheel load stresses – Temperature stresses –							
	Frictional stresses – Combination of stresses – Design of Joints – IRC							
	method							
	HIGHWAY CONSTRUCTION	CO5						
V	Types of Highway Construction – Construction of Gravel Roads –							

# Highway Engineering, (9th edition) by Khanna, S.K. and Justo ,C.E.G., NemChand Bros, Roorkee, 2010. Traffic Engineering and Transportation Planning, (7th edition) by Kadiyali, L.R., Khanna Publishers, New Delhi, 2010. Specifications for Roads and Bridges – Manual for Maintenance of roads, Most publications, 1976. Reference Books

**Learning Resources** 

- 1. Fundamentals of Transportation Engineering, (3rd edition) by Papacostas, C.S.,Prentice Hall of India Pvt.Ltd, New Delhi, 2009.
- 2. Principles of Highway Engineering by Kadiyali, L.R., Khanna Publishers, NewDelhi, 2012.
- 3. Traffic Planning and Design by Saxena, Dhanpat Rai Publishers, New Delhi, 2010.
- 4. Transportation Engineering An Introduction, (3rd edition) by Jotin Khisty. C, Prentice Hall, Englewood Cliffs, New Jersey, 2012.
- 5. IRC Code for flexible pavement IRC 37 -2001.
- 6. IRC Code for Rigid pavement IRC 58 2002.

### E- Resources & other digital material

Text Books

1. https://nptel.ac.in/courses/ 105/101/105101087

2. <u>https://nptel</u>.ac.in/courses/ 105/104/105104098

# III B.TECH II SEMESTER SYLLABUS

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE3601	Switchgear & Protection	3	3	0	0	30	70	100
20EE3602	Microprocessors and Microcontrollers	3	3	0	0	30	70	100
20EE3603	Power Systems Analysis	3	3	0	0	30	70	100
20EE4601	Professional Elective-II	3	3	0	0	30	70	100
	Open Elective -II	3	3	0	0	30	70	100
20EE3651	Power Systems Lab	1.5	0	0	3	15	35	50
20EE3652	Microprocessors and Microcontrollers Lab	1.5	0	0	3	15	35	50
20EE3653	Electrical Simulation Lab	1.5	0	0	3	15	35	50
20\$\$8651	Soft skills	2	1	0	2	-	50	50
20MC1601	Constitution of India	0	2	0	0	30	70	100
	Community Service Project	4	0	0	0	-	100	100
Total		25.5	18	0	11			

# III B.Tech., II Semester

L - Lecture T - Tutorial P – Practical

	Pro	ofessio	onal I	Elect	tive-]	II		
Course Code	Title	Title Cre I dits		Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE4601A	Distribution System Planning & Automation	3	3	0	0	30	70	100
20EE4601B	Electrical Drives	3	3	0	0	30	70	100
20EE4601C	Digital Signal Processing	3	3	0	0	30	70	100
20EE4601D	Optimization Techniques	3	3	0	0	30	70	100
20EE4601E	Computer Networks	3	3	0	0	30	70	100
L – Lecture T	- Tutorial P – Practical				•			

	Open Elective -II													
Course Code	Title	Cre dits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks						
20CE2601A	Ecology and Environment	3	3	0	0	30	70	100						
20EC2601A	MAT Lab Programming	3	3	0	0	30	70	100						
20EC2601B	TV Engineering	3	3	0	0	30	70	100						
20EE2601A	Energy Management	3	3	0	0	30	70	100						
20IT2601A	Introduction to Data Mining	3	3	0	0	30	70	100						
20ME2601A	Value Engineering	3	3	0	0	30	70	100						
20ME2601B	Human Factors in Engineering	3	3	0	0	30	70	100						

L - Lecture T - Tutorial P – Practical

		HO	NOR	<b>S</b> -II	I			
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE6601A	Industrial Automation & Robotics	4	3	1	0	30	70	100
20EE6601B	Advanced Power System Protection	4	3	1	0	30	70	100
20EE6601C	Power System Reliability	4	3	1	0	30	70	100
20EE6601D	Restructured Power Systems	4	3	1	0	30	70	100

L - Lecture T - Tutorial P – Practical

# **MINOR COURSES**

Course Code	Title	Credits	L	Τ	Р	Continuous Internal	End Semester	Total Marks	Minor in
Cour						Evaluation	Examination	With KS	
20CS5601	Web Technologies	3	3	0	0	30	70	100	CSE
20CS5651	Web Technologies Lab	1	0	0	2	15	35	50	CSE
20IT5601	Software Engineering	4	4	0	0	30	70	100	IT
20EC5601	Circuit Analysis	4	3	1	0	30	70	100	ECE
20EC5602	Industrial and Medical IoT	4	3	1	0	30	70	100	IoT
20ME5601	Modern Technology in Automobile Engineering	4	3	1	0	30	70	100	Automo bile Engineer ing
20ME5602	Design for Additive Manufacturing	4	3	1	0	30	70	100	Digital Manufac turing
20CE5601A	Basic Mechanics of Fluids	4	3	1	0	30	70	100	Civil
	L	<ul> <li>Lecture</li> </ul>	Т - Т	l'uto	rıal	P – Practical			

# SWITCHGEAR & PROTECTION

Course Code	20EE3601	Year	III	Semester(s)	II
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Circuit Theory
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes										
Upon	successful completion of the course, the student will be able to										
CO1	<b>Understand</b> the operation of switchgear equipment and Protective relays and the										
	grounding practices (L2)										
CO2	Apply electromagnetic principles in switchgear equipment and in protective relays.										
	$(\overline{L3})$										
CO3	Apply protective relays for Protection of electrical equipment and grounding										
	practices for Protection against Over Voltages. (L3)										
CO4	Analyze switchgear equipment, protective relays and protection of various										
	electrical equipment. (L4)										
CO5	<b>Examine</b> various grounding practices and Protection against Over Voltages in the										
	power system. (L4)										
CO6	Ability to understand the concepts of switchgear devices, protective										
	relays, protection of power system components, various grounding practices,										
	Protection against Over Voltages and submit a report.										

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01														
CO2	3					1							3	3
CO3	3												3	3
CO4		3											3	3
CO5		2				1							3	3
CO6	3	3						3	3	3			3	3

SYLLABUS										
Unit	Contents	Mapped								
No.		CO								
Ι	<b>Circuit Breakers</b> Circuit Breakers: Elementary principles of arc interruption, Restriking voltage and Recovery voltages – Restriking phenomenon, average and max. RRRV, numerical problems – current chopping and resistance switching – CBratings and specifications, auto reclosures – Numerical Problems. Types of circuit breakers: Minimum oil circuit breakers, Air blast circuit	CO1, CO2 ,CO4,CO6								
	breakers, Vacuum and SF6 circuit breakers.									

	1
Fundamentals of Protective Relaying	
Fundamental principles of protective relaying, protection against other	
abnormal conditions, functional characteristics of protective relaying,	
evaluation of protective relaying.	CO1, CO2
Principle of operation and construction of attracted armature, balanced	CO4, CO6
beam, induction disc and induction cup relays.	
Introduction to static relays and Numerical relays. Comparison of	
electromagnetic, static and numerical relays.	
Application of Relays	
Universal torque equation, over current relay, direction relays,	
differential relays and percentage differential relays.	CO1, CO2
Relays Classification: Instantaneous, DMT, IDMT types and under	CO4, CO6
voltage relays. Distance relays: impedance, reactance, mho.	
Characteristics of distance relays and comparison-Electromagnetic only.	
Generator Transformer and Rus bar Protection	
Protection of generators against stator faults rotor faults and abnormal	
conditions Restricted earth fault and inter-turn fault protection Numerical	
Problems on percentage winding unprotected	CO1,CO3
Protection of transformers: Percentage differential protection Buchholtz	CO4,CO6
relay protection Protection of Lines: Over current three zone distance	
relay protection using impedance relays Protection of hus hars	
differential protection	
Protection Against Over Voltages	
Grounded and ungrounded neutral systems. Effects of ungrounded neutral	
Grounded and ungrounded neutral systems Effects of ungrounded neutral	CO1,CO3
on system performance. Methods of neutral grounding: solid, resistance,	CO5, CO6
transmission lines, stations and substations against direct lightning strokes	
transmission mes, stations and substations against uncer rightning stokes.	
Learning Resources	
xt Books	
Sunil S Rao, "Switchgear Protection and Power Systems", Khanna Publishers,	1 st
edition, 2002	
Badari Ram, D N Viswakarma, "Power System Protection and Switchgear", Th	МН
Publications, 2 nd edition, 2014	
ference Books	
Paithankar and S.R.Bhide, "Fundamentals of Power system protection", Pren	tice Hall
of India Pvt. Ltd., 2 nd edition, 2003	
Ravindranth. B and Chander, "Power System Protection and Switch Gear"	, New
Age International (P) Ltd., 2 nd edition, 2014.	
Ravindra P. Singh, "Switch Gear and Power system Protection", Prentice Ha	all of
IndiaPvt. Ltd., 2 nd edition, 2014	
J.B.Gupta, "Switchgear and Protection", S.Chand publications, 2 nd edition, 202	13
D Links	
https://nptel.ac.in/courses/108101039	
	Fundamentals of Protective Relaying         Fundamental principles of protective relaying, protection against other abnormal conditions, functional characteristics of protective relaying, evaluation of protective relaying.         Principle of operation and construction of attracted armature, balanced beam, induction disc and induction cup relays.         Introduction to static relays and Numerical relays. Comparison of electromagnetic, static and numerical relays.         (Application of Relays         Universal torque equation, over current relay, direction relays, differential relays and percentage differential relays.         Relays Classification: Instantaneous, DMT, IDMT types and under voltage relays. Distance relays: impedance, reactance, mho.         Characteristics of distance relays and comparison-Electromagnetic only. ⁷ Generator, Transformer and Bus bar Protection         Protection of generators against stator faults, rotor faults, and abnormal conditions. Restricted earth fault and inter-turn fault protection. Numerical Problems on percentage winding unprotected.         Protection of transformers: Percentage differential protection, Buchholtz relay protection using impedance relays. Protection of bus bars – differential protection         Protection Against Over Voltages         Grounded and ungrounded neutral systems Effects of ungrounded neutral on system performance. Methods of neutral grounding: solid, resistance, reactance – arcing grounds and grounding practices. Protection of transmission lines, stations and substations against direct lightning strokes.         Sunil S Rao, "Switchgear Protection and Power Systems"

# MICROPROCESSORS AND MICROCONTROLLERS

Course	20EE3602	Year	III	Semester	II
Code					
Course	Professional	Branch	EEE	<b>Course Type</b>	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Digital and
					Analog Circuits
Continuous		Semester		Total	
Internal	30	End	70	Marks:	100
<b>Evaluation:</b>		<b>Evaluation:</b>			

Course Outcomes											
Upon successful completion of the course, the student will be able to											
CO1	<b>Understand</b> the basic features and hardware details of 8086 Microprocessors and 8051 Microcontrollers.	L2									
CO2	<b>Demonstrate</b> architecture, signal description, addressing modes and instruction set of 8086 microprocessors and 8051 microcontrollers.										
CO3	<b>Develop</b> 8086 and 8051 assembly language programs to perform a given task.	L3									
CO4	Analyze interfacing of various peripherals and memories with 8086 and 8051.	L4									
<b>CO</b> 5	<b>Illustrate</b> real-time application of 8086 Microprocessors and 8051 Microcontrollers.	L4									
CO6	Submit a report on 8086 Microprocessors and 8051 Microcontrollers										

	Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1															
CO2	3												2		
CO3	3				1								3	2	
CO4		3				1						1	3	2	
CO5		3			1	1	1						3	3	
CO6								1	3	3	1				

	Syllabus	
Unit No	Contents	Mapped
Ι	Intel 8086 Introduction and evolution of Microprocessors, Architecture of 8086, Register Organization of 8086, Memory Organization of 8086, Pin diagram of 8086. Minimum and Maximum mode operations of 8086, General Bus	CO1, CO2, CO6

	Operation of 8086, Read and Write cycle timing diagram.					
Ш	ASSEMBLY LANGUAGE PROGRAMMING Addressing Modes and Instruction set, Assembler Directives, Procedures and Macros, simple assembly language programming – Factorial of a number, Logical, Shift and Rotate operations and sorting numbers in ascending and descending order.	CO1, CO2, CO3, CO6				
III	<b>Basic Peripherals</b> 8255 PPI, Architecture of 8255 PPI, Various modes of operation of 8255. Programmable DMA Controller 8257, Programmable Interrupt Controller8259, Serial Communication Interface USART 8251.	CO1, CO4, CO6				
IV	<b>8051 Microcontrollers</b> Intel 8051 architecture, memory organization, flags, stack, and special function registers, I/O, ports counters and timers, serial data I/O, interrupts. Addressing modes, instructions set.	CO1, CO2, CO6				
v	8051 Assembly Language Programming         Simple assembly language Programming – Arithmetic operations,         V       Swap,set and reset a bit/byte.         Interfacing and Applications         Interfacing and Applications					
	Learning Resources					
Text	Books					
1. 2.	Douglas V. Hall, "Microprocessors and Interfacing", TMH-Revised 2 nd ed A. K. Ray and K. M. Burchandi, "Advanced Microprocessors and inter McGraw Hill, 2 nd edition, 2006.	ition,2006. rfacing", Tata				
3. <b>Refe</b>	Kenneth J. Ayala, "The 8051 Microcontroller Architecture, Programming Applications", Thomson Publishers, 2 nd Edition, 2004 rence Books	and				
1.	Ajay V. Deshmukh, "Microcontrollers – Theory & Applications", Tata 2005.	McGraw Hill,				
2. 3.	M.A. Mazidi, R.D. McKinlay, J.G. Mazidi, "The 8051 Microcontrolle Approach", Pearson, 2013. Kenneth J Ayala, "The 8086 Microprocessors Architecture, Programming Interfacing the PC" West Publishers, 1005	er: A Systems				
e. Res	interlacing the PC, west Publishers, 1995.					
- NC						
1.	<u>https://nptel.ac.in/courses/108/103/108103157/</u> https://nptel.ac.in/courses/108/107/108107020/ (Web Content)					
2. 3	https://nptel.ac.in/courses/108/107/10810/029/ https://nptel.ac.in/courses/108/105/108105102/					
5.						

### POWER SYSTEMS ANALYSIS

Course Code	20EE3603	Year	III	Semester	II
Course Category	Professional core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	EPG
					Iad
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	<b>Understand</b> the single line diagram of the power system, types of faults, different load flow techniques and stability. (L2)							
CO2	Apply the knowledge of per unit quantities and impedance diagram to calculate the fault current. (L3)							
CO3	Apply iterative techniques for load flow analysis. (L3)							
<b>CO4</b>	Analyze various load flow techniques and Power system Stability(L4)							
CO5	Analyze symmetrical and unsymmetrical faults that occur in a power system. (L4)							
CO6	<b>Submit a report on</b> per unit quantities, faults occurring in power system, load flow studies and power system stability.							

## Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3											1	2	1
CO4		3		3				1					2	1
CO5		3				1							2	1
CO6					1		1		3	3	1			

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
Ι	Per unit Representation	CO1
	Single line diagram, per unit quantities, per unit impedance diagram of a	CO2
	power system, Symmetrical fault analysis: Short circuit current and MVA	CO5
	calculations, fault levels, application of series reactors, Numerical problems.	<b>CO6</b>

П	<b>Power Flow Studies-I</b> Y bus formation by direct inspection method. Necessity of power flow studies – Data for power flow studies-Derivation of static load flow equations– Load flow solutions using Gauss Seidel Method, acceleration factor, algorithm and flowchart, Numerical Problems (max. 3-buses and one iteration only), DC load Flow.	CO1 CO3 CO4 CO6
III	<b>Power Flow Studies-II</b> Newton Raphson method in polar co-ordinates form, Derivation of Jacobian elements, algorithm and flowchart, Numerical Problems (max. 3- buses and one iteration only).	CO1 CO3 CO4 CO6
IV	Short Circuit Analysis Necessity of fault studies, Types of faults, symmetrical components – positive, negative and zero sequence components of voltage, current and impedance. Sequence Networks-positive, negative and zero sequence networks, Unsymmetrical fault analysis-LG, LL, LLG faults with and without fault impedance – Numerical Problems.	CO1 CO2 CO5 CO6
v	<b>Stability Analysis</b> Concepts of steady state, dynamic and transient stabilities – transfer reactance, synchronizing power coefficient, power angle curve – determination of steady state stability and methods to improve steady state stability – Derivation of swing equation – equal area criterion to sudden change in mechanical input, effect of clearing time on stability – Methods to improve transient stability, Numerical Problems.	CO1 CO4 CO6

- Text Books:
  1. D.P.Kothari and I.J.Nagrath, Modern power system analysis, MH publications, 4thEdition, 2011.
- 2. J.J.Grainger & W.D.Stevenson. Gary W. Chang, Power system analysis, MH publications, 2016.

### **Reference Books:**

- 1. T.K.Nagsarkar M.S.Sukhija, Power System Analysis, OXFORD press, 2nd Edition, 2016
- 2. A.R.Bergen, Power System Analysis, Prentice Hall, India, 2nd Edition, 2002.
- 3. J Duncan Glover, M.S.Sarma, T.J.Overbye, Power System Analysis and design, Cengage Learning Publications, 5th Edition, 2011.
- 4. Hadi Saadat, Power system analysis, MH publications, 2nd Edition, 2009.

### **E-Resources:**

https://archive.nptel.ac.in/courses/108/105/108105067/ https://archive.nptel.ac.in/courses/108/104/108104051/

# ECOLOGY AND ENVIRONMENT

Course Code	20CE2601A	Year	III	Semester(s)	II
Course Category	Open Elective -II	Branch	Common to All	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequ isites	-
Continuous Internal Evaluation:	30	SemesterEnd Evaluation:	70	Total Marks:	100

Course Outcomes														
Upon successful completion of the course, the student will be able to:														
CO1	Inte	Integrate information related to structure and functions of ecological units. [L3]												
CO2	Ana	<b>lyze</b> an	d com	munica	ate the	conce	pts of e	enviroi	nment.	[L4]				
CO3	Ana	<b>lyze</b> va	rious e	enviror	nmenta	l comp	onents	s and d	lemons	trate usi	ng techr	nology. [	[L4]	
COA	Ana	<b>lyze</b> an	d eval	uate	polici	es and	frame	e worl	ks for	welfar	e of en	nvironme	ent &	socia
04	susta	inabili	ty. [L4	·]										1
CO5	App	<b>ly</b> syste	em con	icepts i	for bio	-monit	oring o	enviro	nmenta	l issues.	[L3]			
	Co	ntribut	tion of	Cour	se Out	comes	towa	rds acl	hievem	nent of l	Program	1 Outco	mes	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2						2					2		2
CO2	2					3	3							3
CO3	3						3	3						3
<b>CO4</b>	2						3							3
CO5	2					2	2					2		2
Avg.	2						3					2		3
	1	- Low					2-Me	dium				3-Hig	gh	
						Cou	rse (	Cont	tent					
	F		GV											
	I	ntrodua	rtion_	Bios	nhere	scone	orga	nizatio	on and	sionifi	cance F	Ecosyste	m	
UNIT	-1	concept structure & function Eactors offacting accounter Evolution									CO1			
	N	Natural Salaction and its acological significance. Deputation perspectors									CO2			
		rowth	regula	tion 1	elatio	nching	shetwa	en or	ance.	i opuia ne	uon pai	ameters	5-	
	<u> </u>			FSOU		1311pa		'EME	NT.	115.				
	D	AIUN	$AL \mathbf{N}$	finitic	NCEC		anau	opt on	d coor	oity of	racaura	o Foro	ata &	
		Resource- Definition, category, concept and scarcity of resource. Forests &									CO1			
UNIT	-2	na m	e- 01	obai		Tradia						uioii).	Lanu	$CO^2$
	K	esourc	$\frac{1}{1}$			india	, SOII	& SOI	I Con		on. wai	er reso	urce-	002
	p	otentia	us and	1 use	with	specia	l refe	rence	to Ind	lia, Co	ncept o	of Integ	rated	
	V	vater	Kesou	irces	Mana	igeme	nt (I	WKM	). Re	mote	Sensing	and	GIS:	
	A	pplica	tions :	in con	servin	ig reso	urces		0015		ADDET	ICATI		
	E	NVIR	UNMI	ENTA		USCI	ENCE	S &	COM	PUTER	APPL	ICATI	JNS:	000
UNIT	-3   ^S	tructur	e and	comp	ositio	n of at	mospl	here, l	nydros	phere, l	lithosph	ere and		CO3
	b	iosphe	re. Sc	ale of	meteo	prolog	y, pres	ssure,	tempe	rature,	atmospl	heric		
	st	ability	. Grap	phical	repres	sentati	on of	Data,	creatii	ng Data	base tal	bles.		
	Ε	NVIR	ONMI	ENTA	L POI	LICY,	EDU(	CATIC	)N AN	D ETH	ICS:			
UNIT	-4   In	nporta	nt Na	tional	polici	es: Na	tional	envir	ronmen	ntal pol	icy, 200	)6 &		
	N	ationa	l agric	cultura	al poli	cy etc	.Legi	<u>slatio</u> r	n: Env	ironme	nt Prote	ection A	.ct,	CO4

	1986	Environmental education: Goals and objectives of environmental						
	education. Environment awareness and action: Role of NGOs in							
	environmental awareness.							
	Envi	ronmental movements in India- silent valley movement, Chipko						
	mov	ement, Narmada Bachao Andolan, Environmental movements in the						
	West	t- Green Peace.						
	ENV	IRONMENTAL MONITORING AND MANAGEMENT:						
	Envi	ronmental impact analysis and EMP; Analytical approaches and	CO4					
UNIT-5	instr	umentation in environmental monitoring; Bio-monitoring of air	CO5					
	pollu	tion – plants as bio monitors; Bio monitoring of running water						
	pollu	tion.(Software's)Organic Farming and its ecological significance.						
	Learning Resources							
		1) Singh, J.S; Singh, S.P. and Gupta S.R. (2014) Ecology, Environmental Scie	ence					
		and Conservation. S. Chand & Company Pvt. Ltd. New Delhi.						
Toyt De	oka	2) Sharma, P.D. (2011) Ecology and Environment (11 th edition) Rastogi						
Text Du	OUKS	Publication, Meerut.						
		3) Bharucha, E. (2013) Text Book of Environmental Studies (2 nd edition.).						
		Universities Press, Hyderabad.						
		1) Nobel, B.J. and Wright, R.T. (1995) Environmental Science. Prentice Hall.						
Refere	nce	2) Agarwal, S.K. (1991) Pollution Ecology. Himanshu Publication, Udaipur.						
Book	S	3) S.V.S.Rana, Essentials of Ecology and Environmental Science, Prentice Ha	llIndia,					
		New Delhi, 2011.						
E-Resou	rces							
& oth	er	http://nptel.ac.in						
algita mater	11 ial							
mater	ial							

# MATLAB PROGRAMMING

Course	20EC2601A	Year	III	Semester	II
Code					
Course	Open	Branch	Common to	<b>Course Type</b>	Theory
Category	Elective-II		All		
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
<b>Evaluation:</b>		<b>Evaluation:</b>			

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Outline the basic concepts of MATLAB. (L2)							
CO2	Develop programs for scientific and mathematical problems. (L3)							
CO3	Analyze an engineering system/Problem through graphical representation and numerical analysis. (L4)							
CO4	Build optimized code for various applications in Engineering and Technology. (L3)							

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1-	2-Medium correlation				3-Strong correlation									
* _	Avera	ge valı	ie indi	cates c	ourse o	correla	tion str	rength	with n	nappe	d PO			
Cos	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9	POQ	РО	РО	РО	PSO1	PSO2						
COS	101	102	105	104	105	100	107	100	10)	10	11	12	1501	1502
CO1	2									1			2	2
CO2	3									2			3	3
CO3		2								2			2	2
CO4	3									2			3	3

	Syllabus	
Unit	Contents	Mapped CO
N0.		
Ι	<b>Introduction:</b> Starting MATLAB, Working in command window, Arithmetic operations, Display formats, Elementary Math Built-in functions, Defining scalar variables, useful commands for managing variables, Script files, Examples of MATLAB applications	CO1, CO2
п	<b>Creating arrays and Mathematical operations with arrays:</b> Creating 1-dimensional and 2- dimensional arrays, The Transpose operator, Array addressing, using a colon: in addressing arrays, Adding elements to existing variables, Deleting elements, Built in functions for handling arrays, Strings and strings as variables, Addition and Subtraction, Array Multiplication and Division, Element-by-Element operations, using arrays in MATLAB built-in math functions, Built in functions for orton ng arrays, Generation of Random Numbers, Examples of MATLAB applications.	CO1, CO2, CO4

III	<b>Two Dimensional and Three-Dimensional Plots:</b> plot, fplot commands, Formatting a plot, plots with logarithmic axes, error bars, special graphics, Histograms, Polar plots, putting multiple plots on the same page Multiple figure windows Examples Line plots Mesh and	CO1,CO2,C O3,CO4
	surface plots, plots with special graphics, The view command, Examples of MATLAB applications	
IV	<b>Programming in MATLAB:</b> Relational and Logical operators, conditional statements, The switch-case statement, Loops, Nested Loops and Nested conditional statements, The break and continue commands, creating a function file, structure of a function file, Local and Global variables, saving a function file, using a User-defined function, Examples of simple User-defined functions, comparison between script files and function files.	CO1,CO2,C O4
V	<b>Polynomial, Curve-fitting, Interpolation, Numerical Analysis</b> : Polynomials, curve fitting, Interpolation, The Basic fitting interface, Examples, solving equation of one variable, Finding minimum or maximum of a function, Numerical integration, ordinary differential equations.	CO2,CO3, CO4

I ' D
Learning Resources
Text Books
1. MATLAB: An Introduction with applications – Amos Gilat, Wiley India Pvt. Ltd, 4 th Ed.,
2012.
Reference Books

---

Getting started with MATLAB – Rudra Pratap, Oxford University Press, 2010
 MATLAB and SIMULINK for Engineers – Agam Kumar Tyagi, Oxford University Press, 2012.

# **TV ENGINEERING**

Course Code	20EC2601B	Year	III	Semester	II
Course	Open	Branch	Common to	<b>Course Type</b>	Theory
Category	Elective-II		All		
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	Compare Digital TV transmission standards and performance parameters (L2)						
CO2	Analyse channel coding, errors, interferences and modulation techniques for Digital TV						
	(L4)						
CO3	Make use of RF amplifiers, modules and systems for Digital TV (L3)						
<b>CO4</b>	Identify Transmission lines for Digital TV(L3)						
CO5	Test for a Digital TV Transmitter (L4)						

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1-V	Weak	correl	ation	2-N	/lediur	n corr	elation	n
* - 1	Averag	e value	e indic	ates co	urse co	orrelati	ion stre	eng
Cos	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	F
CO1	2	-	-	-	2	1	-	-
CO2	-	3	-	-	2	-	-	-

* - 1	Averag	e value	e indica	ates co	urse co	orrelati	on stre	ength v	vith ma	apped I	20			
Cos	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	2	1	I	-	-	-	-	-	-	
CO2	-	3	-	-	2	-	I	-	-	-	-	-	-	2
CO3	-	2	-	-	3	-	-	-	-	-	-	-	-	
CO4	-	-	-	-	2	2	-	-	-	-	-	-	-	3
CO5	-	2	-	-	2	-	1	-	-	-	-	-	-	

3-Strong correlation

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	Digital Television Transmission Standards ATSC terrestrial transmission standard, vestigial sideband modulation, DVB-T transmission standard, ISDB-T transmission standard, channel allocations, antenna height and power, MPEG-2 Performance Objectives for Digital Television: System noise, external noise sources, transmission errors, error vector magnitude, eye pattern, interference, cochannel interference, adjacent channel interference, analog to digital TV, transmitter requirements	CO1, CO2
II	Channel Coding and Modulation for Digital Television: Data synchronization, randomization/scrambling, forward error correction, interleaving, inner code, frame sync insertion, quadrature modulation, 8 VSB, bandwidth, error rate, COFDM,	CO1, CO2

	01 11 11 1 1 1 1 1	
	flexibility, bandwidth	
III	<b>Transmitters for Digital Television</b> : Precorrection and equalization, up conversion, precise frequency control, RF amplifiers, solid-state transmitters, RF amplifier modules, power supplies, cooling, automatic gain or level control, ac distribution, transmitter control, tube transmitters, performance quality.	CO1, CO3
IV	<b>Transmission Line for Digital Television:</b> Fundamental parameters, efficiency, effect of VSWR, system AERP, rigid coaxial transmission lines, dissipation, attenuation, and power handling, higher-order modes, peak power rating, frequency response, standard lengths, corrugated coaxial cables, wind load, waveguide, bandwidth, waveguide attenuation, power rating, frequency response, size trade-offs, waveguide or coax pressurization	CO1, CO4
V	<b>Test and Measurement for Digital Television:</b> Power measurements, average power measurement, calorimetry, power meters, peak power measurement, measurement uncertainty, testing digital television transmitters.	CO1, CO5

Text Books

1. Gerald w. Collins, Fundamentals of Digital Television Transmission, John Wiley, 2001.

### **Reference Books**

1 R. R. Gulati, Modern Television Practice, Principles, Technology and servicing, 2/e, New Age International Publishers, 2001.

2 John Arnold, Michael Frater, Mark Pickering, Digital Television Technology and Standards, John Wiley, 2007.

### e- Resources & other digital material

1.<u>https://www.youtube.com/watch?v=_nGnRvyHMEI&list=RDCMUCdlnqMpRrMcClK2fT</u> <u>6z8Eew&index=2</u>

2. <u>https://www.rfwireless-world.com/Tutorials/digital-television-DTV-basics.html</u>

Course Code	20EE2601A	Year	III	Semester(s)	II
Course Category	Open Elective-II	Branch	Common to All	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basics of Electrical & Electronics Engineering
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# ENERGY MANAGEMENT

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Understand the fundamentals of energy scenario, energy management, power factor,
	lighting and energy instrument, electric energy and economic aspects.
	(L2)
CO2	Apply the knowledge of energy scenario and energy management in electrical energy.
	(L3)
CO3	Apply the knowledge of Power Factor, Lighting and Energy Instruments use in
	electrical energy systems. (L3)
CO4	Analyze the methods to improve efficiency of electrical energy systems. (L4)
CO5	Analyze the economic aspects for energy conservation. (L4)
CO6	Ability to apply the various laws of energy management tools to measure the basic
	parameters and submit a report.

Ū	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Str	ength	of co	rrelat	ions (	3:Hig	h, 2: N	Medium,	1:Low)	)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					2	2							
CO3	3		2		2									

CO4

CO5

CO6

SYLLABUS							
Unit	Contents	Mapped					
No.		CO					
Ι	<b>Energy Scenario</b> Commercial and non-commercial energy, primary and secondary energy resources, global primary energy reserves, commercial energy production, final energy consumption, energy needs of growing economy, long term energy scenario, energy pricing, sector wise energy consumption in India, energy and environment.	CO1,CO2, CO6					

II	<b>Energy Management</b> Introduction to energy management and objectives, principles of energy management, organizational structure, energy management program, energy policy, energy planning, controlling, ownership, reporting, summary.	CO1, CO2, CO6
Ш	<b>Power Factor Improvement, Lighting and Energy Instruments</b> Power factor –causes of low PF, effects of low PF, advantages of PF improvement, PF with non-linear loads, Lighting fundamentals, process to improve lighting efficiency– List of Instruments for energy audit- wattmeter, data loggers, thermocouples, pyrometers, lux meters, tongue testers (working principle and measurement).	CO1, CO3, CO6
IV	<b>Electric Energy Management</b> Introduction, power supply, effects of unbalanced voltages on the performance of motors, electric motor operating loads, determining electric motor operating loads, power meter, slip measurement, electric motor efficiency, sensitivity of load to motor rpm, theoretical power consumption, motor efficiency management. <b>Energy efficient transformers</b> : Introduction, transformer loading/efficiency analysis.	CO1, CO4, CO6
V	<b>Economic Aspects and Analysis</b> Economics analysis introduction, objectives, general characteristics of capital investment, depreciation methods-straight line, unit production and double declining, time value of money-simple and compound interests, internal rate of return, net present value method, calculation of simple payback method.	CO1,CO5,C O6

# **Text Books**

- Wayne C.Turner, —Energy management Hand book, John Wiley and son, 8th Edition 2012.
- [2] S.C. Tripathy, Electric Energy Utilization and Conservation, Tata McGraw Hill, 1991.
- [3] Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-1, General Aspects (available online).

# **Reference Books**

- John. C. Andres, Energy Efficient Electric Motors, Marcel Dekker Inc. Ltd 3rd Edition, 2005.
- [2] Paul W.O. Callaghan, —Energy Management, McGraw hill Book Company,1st Edition, 2005.

### Web Links

- 1. https://www.routledgehandbooks.com/doi/10.1201/9781315374178-4 (Economic Aspects)
- 2. https://www.yourelectricalguide.com/2019/05/lux-meter-working-principle.html
- 3. https://electricalfundablog.com/clamp-meter-tong-tester-types-operating-principle-howto-operate/
- $4. \ https://www.elprocus.com/what-is-pyrometer-working-principle-and-its-types/$
- 5. <u>http://www.dspmuranchi.ac.in/pdf/Blog/qqqqgmailcomthemocouple1.pdf</u>
- 6. https://www.profitbooks.net/what-is-depreciation/

# INTRODUCTION TO DATA MINING

Course Code	20IT2601A	Year	III	Semester	II
Course Category	Open Elective-II	Branch	EEE	<b>Course Type</b>	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Database Management Systems
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes														
Upon successful completion of the course, the student will be able to:														
CO1	Understand the basic principles, process and techniques of data mining. [L2]													
CO2	Use pre-processing techniques on different datasets. [L3]													
CO3	Apply techniques and algorithms for Mining frequent patterns, classifying and clustering data. [L3]													
CO4	Analyze the data for mining frequent patterns, associations, classification and outlier detection in a real scenario. [L4]													
	Cor	ntribut	ion of 1	Cours - Low	se Out	comes 2-Me	towar dium	ds ach 3-	1ievem High	ent of F	Program	Outco	mes	
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2	3			3									3	
CO3	3			3									3	3
CO4	3	3											3	3
Avg.	3	3		3									3	3

SYLLABUS							
Unit No.	Content	Mapped PO					
I	Introduction: What is data mining? What kinds of data can be mined? What kinds of pattern can be mined? Which technologies are used? Whichkinds of applications are targeted?, Major Issues in Data Mining.	CO1					
II	Getting to Know Your Data: Data objects and Attribute Types, Basicstatistical descriptions of data, Measuring Data Similarity and Dissimilarity. Data Preprocessing: An overview, Data Cleaning, Data integration, DataReduction, Data Transformation and Discretization.	CO1 CO2					
III	Mining frequent patterns, Associations and Correlations- Basic Concepts,Frequent itemset Mining methods- Apriori Algorithm, Generating association rules from frequent itemsets, improving the efficiency of Apriori.	CO1 CO3 CO4					
IV	Classification: Basic Concepts – Basic concepts, Decision Tree Induction,Rule Based Classification, Model evaluation and Selection.	CO1 CO3,CO4					
V	Cluster Analysis: Basic Concepts and Methods- Cluster Analysis, partitioning methods, Hierarchical Methods and evaluation of Clustering	CO1 CO3,CO4					
---	-----------------------------------------------------------------------------------------------------------------------------------------------	----------------					
---	-----------------------------------------------------------------------------------------------------------------------------------------------	----------------					

#### **Text Books**

1. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques" Third Edition, Elsevier, 2012.

### **Reference Books**

1. Michael Steinbach, Vipin Kumar, Pang-Ning Tan, Introduction to data mining, First Edition, Addison Wesley, 2006

2. Margaret H. Dunham, Data Mining Introductory and Advanced Topics, 1/e, Pearson Publishers, 2006

E-Resources & other digital material

1. https://www.coursera.org/lecture/code-free-data-science/introduction-to-data-mining-hbb2V

2. https://onlinecourses.swayam2.ac.in/cec19_cs01/preview

# VALUE ENGINEERING

Course Code	20ME2601A	Year	III	Semester	II
Course Category	Open Elective-II	Branch	Common to All	<b>Course Type</b>	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Understand the basic concepts, techniques and applications of value engineering [L2]						
CO2	Describe job plan of value engineering. [L2]						
CO3	Illustrate different value engineering techniques and versatility of value engineering. [L3]						
<b>CO4</b>	Illustrate the efforts of value engineering team during the process of value engineering [L3]						

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High(3), M: Medium(2), L:Low(1))													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2			3			3		3			3
CO2	1	2	2			3			3		3			3
CO3	1	2	2			3			3		3			3
<b>CO4</b>	1	2	2			3			3		3			3

	Syllabus							
UNIT	Content	Mapped CO						
1	<ul> <li>Introduction: Value engineering (VE) concepts, advantages, applications, problem recognition, and role in productivity, criteria for comparison, element of choice.</li> <li>Organization: Level of value engineering in the organization, size and skill of VE staff, small plant, VE activity, unique and quantitative evaluation of ideas.</li> </ul>	CO1						
2	<b>Value engineering job plan</b> : Introduction, orientation, information phase, speculation phase analysis phase. Selection and Evaluation of value engineering Projects, Project selection, methods selection, value standards, application of value engineering methodology.	CO1,CO2						

3	<b>Value engineering techniques</b> : Selecting products and operation for value engineering action, value engineering programmes, determining and evaluating function(s) assigning rupee equivalents, developing alternate means to required functions, decision making	CO1,CO3
	Monte Carlo method make or buy, measuring profits, reporting results, Follow up, Use of advanced technique like Function Analysis System.	
4	<ul> <li>Versatility of value engineering: Value engineering operation in maintenance and repair activities, value engineering in non hardware projects.</li> <li>Initiating a value engineering programme: Introduction, training</li> </ul>	CO1,CO3
	plan, career development for value engineering specialties.	
5	Value engineering level of effort: Value engineering team, co- coordinator, designer, different services, definitions, construction management contracts, value engineering case studies.	CO1,CO4

# **TEXT BOOK:**

1. Anil Kumar Mukhopadhyaya, "Value Engineering: Concepts Techniques and applications", SAGE Publications 2010.

# **REFERENCES**:

- 1. Alphonse Dell'Isola, "Value Engineering: Practical Applications for Design, Construction, Maintenance & Operations", R S Means Co., 1997.
- 2. Richard Park, "Value Engineering: A Plan for Invention", St. Lucie Press, 1999.
- 3. Del L. Younker, "Value Engineering analysis and methodology", Marcel Dekker Inc, New York, 2004.
- 4. Miles, L.D., "Techniques of Value Analysis and Engineering", McGraw Hillsecond Edition, 1989.
- 5. Khanna, O.P., "Industrial Engineering and Management", Dhanpat Rai & Sons, 1993.
- 6. Anil Kumar Mukhopadhyaya, "Value Engineering Mastermind: From concept to Value Engineering Certification", SAGE Publications, 2003

Course Code	20ME2601B	Year	III	Semester	Π				
Course Category	Open Elective-II	Branch	Common to All	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil				
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100				

# HUMAN FACTORS IN ENGINEERING

CO	Statement
CO1	Discuss the fundamentals of Human factors, Physical work, Anthropometry, Ergonomics, Machine controls, Seating design, Colour – Light, Temperature – Humidity –Illuminations and Measurement of sound. [L2]
CO2	Identify the role of Anthropometry and Ergonomics in product design. [L3]
CO3	Choose the effective seating design and Machine controls for improvement of human workplace. [L3]
CO4	Represent the importance of colour and light, Temperature – Humidity – Illumination, Measurement of sound in human workplace. <b>[L3]</b>

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High(3), M: Medium(2), L:Low(1))													
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		2	1	1	2			1		3	1	2	3
CO2	1		2	1	1	2			1		3	1	2	3
CO3	1		2	1	1	2			1		3	1	2	3
CO4	1		2	1	1	2			1		3	1	2	3

	Syllabus							
UNIT	Content							
I	<ul> <li>Fundamentals of Human Factors Engineering: Human Biological, Ergonomic and psychological capabilities and limitations, Concepts of human factors engineering and Ergonomics, Man-Machine system and Design philosophy.</li> <li>Physical work and energy expenditure: Manual lifting, Work posture, Repetitive motion, Provision of energy for muscular work, Heat stress, Role of oxygen physical exertion, Measurement of energy expenditure, Respiration, Pulse rate and blood pressure during physical work, Physical work capacity and its evaluation.</li> </ul>	CO1						
II	<b>Anthropometry</b> : Physical dimensions of the human body as a working machine, Motion size relationships, Static and dynamic anthropometry, Anthropometric design principles, Using anthropometric measures for industrial design.	CO1, CO2						

Machine controls: Improvement of human work place through	CO1,							
controls, Displays and Controls, Shapes and sizes of various controls	CO3							
and displays Multiple display and control situations. Design of								
main antrologic and machine tools. Design of								
major controls in automobiles and machine tools, Principles of nand								
tool design.								
Work place and seating design: Design of office furniture,								
Redesign of instruments. Work process: Duration of rest periods.								
Design of visual displays Design for shift work								
Geber and <b>Feld</b> : Only and the second share of the second statement of the sec	001							
<b>Color and light:</b> Color and the eye, Color consistency, Color terms,	COI,							
Reactions to color and color continuation, Color on engineering	CO4							
equipments.								
<b>Temperature-Humidity-Illumination and Contrast</b> : Use of								
Photometers, Recommended illumination levels, the ageing eye, Use								
of indirect (Reflected) lighting Cost efficiency of illumination								
Spacial purpose lighting for illumination and quality control								
Special purpose lighting for multimation and quality control.	004							
Measurement of sound: Noise exposure and hearing loss, Hearing	CO1,							
protectors, Analysis and reduction of noise, Effects of noise,	CO4							
Performance annoyance of noise and interface with communication,								
Sources of vibration and performance effect of vibration.								
	<ul> <li>Machine controls: Improvement of human work place through controls, Displays and Controls, Shapes and sizes of various controls and displays, Multiple display and control situations, Design of major controls in automobiles and machine tools, Principles of hand tool design.</li> <li>Work place and seating design: Design of office furniture, Redesign of instruments, Work process: Duration of rest periods, Design of visual displays, Design for shift work.</li> <li>Color and light: Color and the eye, Color consistency, Color terms, Reactions to color and color continuation, Color on engineering equipments.</li> <li>Temperature-Humidity-Illumination and Contrast: Use of Photometers, Recommended illumination levels, the ageing eye, Use of indirect (Reflected) lighting, Cost efficiency of illumination. Special purpose lighting for illumination and quality control.</li> <li>Measurement of sound: Noise exposure and hearing loss, Hearing protectors, Analysis and reduction of noise, Effects of noise, Performance annoyance of noise and interface with communication, Sources of vibration and performance effect of vibration.</li> </ul>							

### Learning Recourse(s)

Text Book(s)

1. M. S. Sanders and E. J. McCormick, Human Factors in Engineering Design, VII Edition, McGraw Hill International, 1993.

## **Reference books**

- P. V. Karpovich and W. E. Sinning, Physiology of Muscular Activity", VII Edition, Saunders (W.B.) Co Ltd., 1971.
- 2. Applied Ergonomics Handbook, I.P.C. Science and Technology Press Limited, 1974.
- 3. M. Helander, A Guide to the Ergonomics of Manufacturing, II Edition, CRC Press, 1997.
- 4. K. H. E. Kroemer, H. B. Kroemer, K. E. Kroemer Elbert, Ergonomics: How to design for ease and efficiency, II Edition, Pearson Publications, 2001.

	DIDTIDUTION				
Course Code	20EE4601A	Year	III	Semester(s)	II
Course Category	Professional Elective –II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Electrical Power Generation, Transmission and Distribution
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# **DISTIBUTION SYSTEM PLANNING & AUTOMATION**

	Course Outcomes							
Upon suc	ccessful completion of the course, the student will be able to							
CO1	<b>Understand</b> the concepts of distribution system planning and automation. (L2)							
CO2	Apply the knowledge of distribution system planning and forecasting. (L3)							
CO3	Apply the concepts of sub transmission lines, distribution substations, primary and secondary Systems. (L3)							
CO4	Analyze the theory of distribution automation and SCADA systems. (L4)							
CO5	<b>Examine</b> the mechanism of network reconfiguration, improvement in voltage profile,Capacitor placement in distribution system. (L4)							
CO6	<b>Show</b> the ability to apply the various distribution system planning and automation concepts and submit a report.							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													3	3
CO2	3												3	3
CO3	2					2							3	3
CO4			2				2						3	3
CO5		2				2							3	3
CO6									3	3		3	3	3

SYLLABUS									
Unit	Contents	Mapped							
No.		CO							
Ι	Distribution Systems Planning:								
	Introduction, Distribution system planning, Factors affecting system								
	planning, Present distribution planning techniques, Distribution system	CO2							
	planning in the future, Future nature of distribution planning, Central role								
	of the computer in distribution planning, Impact of Dispersed Storage and								
	Generation, Load characteristics, Load forecasting, Long term forecasting,								
	Technological forecasting.								

Π	<b>Design Of Sub transmission Lines and Distribution substations:</b> Sub-transmission, Distribution substations, Sub-station bus schemes, Sub- station location, Rating of distribution substation, Substation service area with 'n' primary feeders, Comparison of four and six feeder patterns.	CO1 CO3 CO6
III	<b>Design Considerations of Primary and Secondary Systems:</b> Radial type and loop type primary feeders, Primary network, Primary feeder voltagelevels, Primary feeder loading, Radial feeders with uniformly distributed load and non-uniformly distributed loads, Secondary voltage levels, Secondary banking, and Secondary networks-Secondary mains Voltage drops and power loss calculations- three phase balanced primary lines, non-three phase primary lines.	CO1 CO3 CO6
IV	<b>Distribution Automation</b> Problems of existing Distribution System, Need for Distribution Automation, Characteristics of Distribution System, Distribution Automation (Objectives, Functions, Benefits), Communication Requirements for DA, Remote Terminal Unit (RTU) ,Network reconfiguration, Improvement in Voltage Profile, Capacitor Placement in Distribution System for Reactive Power Compensation, Algorithm for location of capacitor.	CO1 CO4 CO5 CO6
V	<b>SCADA SYSTEM</b> Introduction, Block Diagram, Components of SCADA, Functions of SCADA, and SCADA applied to Distribution Automation, Advantages of DA through SCADA, Requirements and Feasibility, DA Integration Mechanisms, Communication Protocols in SCADA Systems.	CO1 CO4 CO6

#### **Text Books**

1. Dr M K Khedkar and Dr G M Dhole, "A Textbook of Electric Power Distribution automation", University Science Press, 1st Edition 2011.

2. Turan Gonen, "Electric Power Distribution system Engineering", CRC press, 3rd edition, 2014

#### **Reference Books**

1. A.S. Pabla, "Electric Power Distribution " Tata Mc Graw-hill Publishing Company, 6th edition, 2011.

2. Control and Automation of Electrical Power Distribution systems by James North cote and Robert Wilson, CRC press, 1st edition 2006.

## Web Links

1. https://www.youtube.com/playlist?list=PLwdnzlV3ogoWKGs1XqdyB0qcgijA1PfYJ

2. <u>https://www.youtube.com/watch?v=DlGSGJISxUI&list=PLLy_2iUCG87DxrqJr3dBhSruMiRHK0rNr</u>

-					
Course Code	20EE4601B	Year	III	Semester(s)	II
Course Category	Professional Elective-II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Power Electronics, Electrical Machines-1, Electrical Machines-2
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

## ELECTRICAL DRIVES

	Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to								
CO1	Understand the basic Power Converters to drives Classification of Electrical								
	Drives, choice of electric drives and selection of drives ,braking and motoring								
	operations of converters fed to drives.(L2)								
CO2	Apply the basic knowledge to obtain the operation, multi-quadrant operation, speed								
	torque characteristics ,applications of Rectifiers and Choppers fed to DC drives								
	,Various parts of Electric Drive, (L3)								
CO3	Apply the basic knowledge to obtain the operation, speed torque characteristics,								
	applications for Inverters and AC to AC converters fed to AC drives, fundamental								
	torque equation. (L3)								
CO4	Analyze the concepts of Rectifiers and Choppers fed to DC drives.(L4)								
CO5	Analyze the concepts of Inverters and AC to AC converters fed to AC drives,								
	fundamental torque equation. (L4)								
CO6	Submit a report in Fundamentals, Rectifiers, Choppers, Inverters and AC to AC								
	converters of Electric Drives.								

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1	1						2	1
CO3	3					1	1						2	1
CO4		2											2	1
CO5		2											2	1
CO6						3	3		3	3		3	2	1

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Fundamentals of Electric Drives	CO1
	Introduction of Electric drives and various parts, Classification of Electrical	CO2
	Drives, choice of electric drives and selection of drives for various	CO3
	applications; fundamental torque equation, multi-quadrant operation of a	CO5
	motor driving hoist, Equivalent values of Drive Parameters.	CO6
II	<b>DC Drives-Rectifiers</b> Controlled rectifier fed dc drives, single phase half controlled rectifier control, single phase fully controlled rectifier control of dc separately excited motor, rectifier control of dc series motor. Three phase half controlled rectifier control, Three phase fully controlled rectifier control of dc separately excited motor, multi quadrant operation of separately excited motor fed from fully controlled rectifier.	CO1 CO2 CO4 CO6
III	<b>DC Drives- Choppers</b> Buck and Boost converter fed DC Drives, types of braking, Control of chopper fed dc separately excited, series motor and speed-torque characteristics. Converter ratings and closed loop control.	CO1 CO2 CO4 CO6
IV	AC Drives	CO1
	Stator voltage control, variable frequency control from voltage sources, VSI	CO3
	fed induction motor drives, rotor resistance control, slip power recovery	CO5
	schemes-static scherbius, static Kramer drive.	CO6
V	Essential Applications of Electrical Drives	
	Solar powered Pump Drives, Battery Powered Electrical Vehicles, Drive	CO1
	requirements for machine tools, Brushless DC motor drive for Servo	CO2
	Applications. AC Traction using converter controlled dc Motors and DC	CO3
	Traction Using Chopper controlled dc Motors.(Block diagram only-no	CO6
	problems)	

#### **Text Books**

- 1. G K Dubey ,Fundamentals of Electric Drives, Narosa Publications,2nd edition,2011
- 2. R.Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Prentice Hall of India, 2nd edition, 2001.

#### **Reference Books**

- 1. G.K. Dubey, Power Semiconductor Controlled Drives, Alpha Science International Ltd. 1st edition,2002.
- 2. Bimal K. Bose, Modern Power Electronics and AC Drives, Prentice-hall of India Pvt. Ltd,2nd edition, 2005.
- 3. P.S.Bhimbra, 'PowerElectronics', Khanna Publications, 5th edition, 2018.
- 4. Vedam Subramanyam, Electric Drives Concepts and Applications, Tata McGraw Hill Education Private Limited, 2nd edition, 2011

#### Web Links

1. https://nptel.ac.in/courses/108104140

# DIGITAL SIGNAL PROCESSING

Course Code	20EE4601C	Year	III	Semester(s)	II
Course Category	Professional Elective-II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Signals & Systems
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes								
Upon	successful completion of the course, the student will be able to								
CO1	Understand the fundamentals of discrete-time systems and decimation, interpolation								
	in multi rate digital signal processing (L2).								
CO2	Apply Fourier Transforms to develop DFT,FFT and construct direct, cascade form								
	structures of digital systems (L3).								
CO3	Apply various mapping techniques, window methods to find transfer function of								
	digital filters and sampling rate conversion in DSP applications (L3).								
CO4	Analyze causality, stability of LTI systems and circular convolution using DFT (L4).								
CO5	Analyze the IIR and FIR digital filters for the given specifications (L4).								
CO6	Submit a report on various concepts of Digital signal processing.								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01														
CO2	3												2	1
CO3	3						2						2	1
CO4		3											2	1
CO5		3	3			2		2					2	1
CO6									3	3	3	3	2	1

	SYLLABUS								
Unit	Contents	Mapped CO							
No.									
I	<b>Transform Analysis of Discrete time LTI Systems</b> Analysis of Discrete-time Linear Time-Invariant Systems, review of convolution-matrix method, system function of LTI systems characterized by linear constant coefficient difference equations: Stability, Causality, Impulse response and Step response for rational system functions.	CO1,C04, CO6							

Π	The Discrete Fourier Transform (DFT)Introduction to DFT, Properties of the DFT, Circular Convolution,Relationship among DTFT, DFT and ZT, Inverse FFT, computation ofDFT and IDFTFFT AlgorithmsRadix-2Decimation-In-Time(DIT)andDecimation-InFrequency (DIF) FFT Algorithms	CO1,CO2, CO4, CO6
ш	<b>Design of IIR Digital Filter</b> Design procedure for Analog Butterworth and Chebyshev filters, Design of IIR Digital Filters using Impulse Invariant method and Bilinear Transformation, examples. Realization of IIR systems – Direct, Cascade forms	CO1,CO2, CO3,CO5, CO6
IV	Design of FIR Digital Filters Introduction to FIR Filters, Design of Linear phase FIR digital filters using Window method, Frequency Sampling Method. Realization of FIR systems-Direct, Cascade forms	CO1,CO2,CO3 ,CO5, CO6
V	Multi rate Digital Signal Processing Introduction, Down Sampling, Decimation, Up sampling, Interpolation, Sampling Rate Conversion, Applications of Multi rateSignal processing.	CO1,CO3, CO6

# 1. John G Proakis & D.G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, PEARSON, 4th Edition, 2007.

2. AlanV.Oppenheim, Ronald W.Schafer, Descrete time signal processing ,PEARSON,3rd Edition,2014

## **Reference Books**

**Text Books** 

- 1. Lonnie C Ludeman ,Fundamentals of Digital Signal Processing, John Wiley & Sons, 2013
- 2. Lawrence R Rabiner& BernardGold ,Theory and Application of Digital Signal Processing, Prentice Hall of India, 3rd series 1975

Web Links

1. <u>https://nptel</u>.ac.in/courses/108106151

# **OPTIMIZATION TECHNIQUES**

Course Code	20EE4601D	Year	III	Semester(s)	Π
Course Category	Professional Elective-II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	<b>Understand</b> basics and theoretical concepts of optimization techniques.(L2)						
CO2	Apply mathematical principles to formulate optimization problems. (L3)						
CO3	<b>Investigate</b> the different classical methods to solve linear, non-linear programming						
	problems and transportation problems. (L4)						
CO4	Solve Linear Programming Problem using dynamic programming. (L3)						
CO5	Analyze the performance of modern heuristic methods to solve optimization						
	problems. (L4)						
CO6	Get the ability to engage in independent study to make an effective presentation						
	and submit report on optimization techniques concepts in various domains.						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3		1									2	2	
CO3		3	1										2	
CO4	3		1										2	
CO5		3	1		2							2	2	
CO6	3								3	3			2	

SYLLABUS							
Unit	Contents	Mapped					
No.		СО					
Ι	Introduction to optimization: Statement of an optimization problem,	CO 1					
	classification of optimization problems, optimization techniques,	CO2					
	Engineering applications of optimization	CO 6					
II	Linear Programming (LP): Introduction and formulation of models,						
	standard form of Linear Programming Problem(LPP), assumptions in LPP,	CO 1					
	simplex method, simplex method using artificial variables, degeneracy in	CO 3					
	simplex method, duality, dual simplex method and sensitivity analysis-						
	change in coefficients of objective function.						

III	<b>Transportation Problem:</b> Vogel [*] 's approximation method, modified distribution method.	CO 1 CO 3 CO 6				
	Non-linear Programming: Unconstrained problems of maxima and minima and constrained problems of maxima and minima, Lagrangian	00				
	method and Kuhn Tucker conditions.					
IV	<b>Dynamic Programming:</b> Solution of linear programming problem, simple problems.	CO 1				
	<b>Modern Methods of Optimization-I</b> : Simulated Annealing: Introduction, Procedure, Algorithm, Features of the Method, Particle Swarm Optimization: Introduction, Computational Implementation of PSO, Improvement to the Particle Swarm Optimization Method, Solution of the Constrained Optimization Problem					
V	Modern Methods of Optimization-II Ant Colony Optimization: Basic Concept, Ant Searching Behavior, Path Retracing and Pheromone Updating, Pheromone Trail Evaporation, Algorithm Firefly Optimization Algorithm: Firefly Behavior, Assumptions, Procedure, Algorithm Teaching-Learning-Based Optimization (TLBO) – Algorithm	CO 1 CO 5 CO 6				

#### **Text Books**

- [1] S.S.Rao, "*Engineering Optimization: Theory and Practice*", New Age International publishers, 5th edition., 2019
- [2] S.D.Sharma, "Operations Research", Kedar Nath Ram Nath and Co, 4th Edition, 2014.
- [3] K.Deb, "*Optimization for Engineering Design: Algorithms and Examples*", Prentice Hall of India Learning Pvt. Ltd., 2nd edition. 2012.

## **Reference Books**

- [1] K.V.Mittal, C. Mohan, "*Optimization Methods in Operations Research and Systems Analysis*", New Age International, 1st edition, 1996.
- [2] H.A.Taha, "*Operations Research: An introduction*", Prentice Hall of India Learning Pvt. Ltd., 10th edition, 2019.
- [3] D.P.Kothari, J.S.Dhillon, "*Power System Optimization*", Prentice Hall of India Learning Pvt. Ltd., 2ndedition, 2011.

# Web Links

1. https://nptel.ac.in/courses/111105039

# **COMPUTER NETWORKS**

Course Code	20EE4601E	Year	III	Semester(s)	II
Course Category	Professional Elective-II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	Illustrate the OSI and TCP/IP reference model. (L2)						
CO2	Analyze various protocols in Data link layer, Transport Layer, and their mechanisms. $(1,3)$						
CO3	Implement routing and congestion control algorithms (L3)						
CO4	Analyze the real applications like electronic mail, www and multimedia. (L3)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	3
CO2	3	3											3	3
CO3			3				3						3	
CO4		3											3	

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Introduction: Uses of Computer Networks, Network hardware, Network	
	software, Networks Topologies, OSI, TCP/IP Reference models.	001
	Physical Layer: Guided Transmission media: twisted pairs, coaxial cable,	COI
	fiber optics, Wireless transmission.	
II	Data link layer: Design issues, framing, Error detection and correction.	
	Elementary data link protocols: simplex protocol, A simplex stop and	
	wait protocol for an error-free channel, A simplex stop and wait protocol	CO1 CO2
	for noisy channel.	01,002
	Sliding Window protocols: A one-bit sliding window protocol, A protocol	
	using Go-Back-N, A protocol using Selective Repeat.	

III	Network Layer: Design issues, Routing algorithms: shortest path routing, distance vector routing, Link State routing, Broadcast routing, Multicast routing. Congestion Control Algorithms, Internet working, The Network layer in the internet.	CO1,CO3
IV	<b>Transport Layer:</b> The transport service, Elements of Transport protocols, The internet transport protocols: UDP, The internet transport protocols: TCP.	CO1,CO2
V	<b>Application Layer: Domain name system, Electronic Mail;</b> The World WEB, Streaming audio and video.	CO1,CO4

Text Books
1. Computer Networks – Andrew S Tanenbaum, David. J. Wetherall, 5th Edition. Pearson
Education/PHI

## **Reference Books**

1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education.

- 2. Computer Networks, A Top-Down Approach Behrouz A Forouzan, Firouz Mosharraf.
- 3. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.

#### Web Links

- 1. <u>http://home.iitk.ac.in/~navi/sidbinetworkcourse/lecture1.ppt</u>.
- 2. http://nptel.iitm.ac.in/courses/IIT-MADRAS/Computer_Networks/index.php

Course Code	20MC1601	Year	III	Semester(s)	II
Course Category	Mandatory Course	Branch	EEE	Course Type	Theory
Credits	0	L-T-P	2-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# **CONSTITUTION OF INDIA**

	Course Outcomes										
Upon	Upon successful completion of the course, the student will be able to										
CO1	Enable the student to understand the importance of constitution (L2)										
CO2	Understand philosophy of fundamental rights and duties (L2)										
CO3	Understand the structure of Union government and central and state relation, with										
	respect to financial and administrative, executive, legislature and judiciary (L2)										
CO4	Understand the structure of State and local government with respect to financial and										
	administrative, executive, legislature and judiciary (L2)										
CO5	Understand the autonomous nature of constitutional bodies like Supreme Court and										
	high court, comptroller and auditor general of India and election commission of India,										
	UPSC, SPSCs and NHRC etc., (L2)										

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1								3						
CO2						3	2	2		1				
CO3								3						
CO4								3						
CO5						2		3						

SYLLABUS												
Unit	t Contents											
No.		СО										
Ι	<b>INTRODUCTION TO INDIAN CONSTITUTION</b> Constitutional history, constituent assembly, salient features of the constitution, significance of preamble, amending process of the constitution.	CO1										
II	<b>RIGHTS AND DUTIES</b> Citizenship, fundamental rights and directive principles, fundamental duties	CO2										

III	<b>UNION GOVERNMENT</b> President and vice president, election, removal and powers, prime minister and council of ministers, parliament, supreme court, union, state relations, emergency provisions.	CO3
IV	<b>STATE AND LOCAL GOVERNMENTS</b> Governor, state legislature, assembly and council, chief minister and council of ministers, high court, rural and urban local governments with special reference to 73 rd and 74 th constitutional amendment acts.	CO4
V	<b>OTHER CONSTITUTIONAL AND STATUTORY BODIES</b> Comptroller and auditor general, election commission, finance commission, attorney general and advocate general, union public service commission (UPSC), state public service commissions (SPSCs), tribunals, national human rights commission (NHRC).	CO5

## **Text Books**

1. J. C. Johari, Indian Government and Politics, Vishal Publications, Delhi, 2009.

2. M. V. Pylee, Introduction to the Constitution of India, 5/e, Vikas Publishing House, Mumbai, 2007.

## **Reference Books**

- 1. D.D. Basu, Introduction to the Indian Constitution, 21/e, Lexis Nexis, Gurgaon, India, 2011.
- 2. Subhas C. Kashyap, Our Constitution, 2/e, National Book Trust India, New Delhi, 2013

## e-Resources & other digital material

- 1. http://nptel.ac.in/courses.php
- 2. http://jntuk-coeerd.in/

# POWER SYSTEMS LAB

Course Code	20EE3651	Year	III	Semester(s)	II
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

	Course Outcomes										
Upon	Upon successful completion of the course, the student will be able to										
CO1	Demonstrate the practical power transmission network and calculate various										
	parameters.(L3)										
CO2	<b>Determine</b> the parameters and fault calculations of synchronous machine.(L3)										
CO3	Analyse the characteristics of different relays used in electrical power systems.(L4)										
CO4	Analyse the modern power system networks by using software tools.(L4)										
CO5	Conduct experiments as a team/individual by using equipment available in the										
	Laboratory.										
CO6	Make an effective <b>report</b> based on experiments.										

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:High, 2:Medium, 1:Low)													
	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PSO1         PSO2													
CO1	3			3								3	2	1
CO2	3			3								3	2	1
CO3		3		3								3	2	1
CO4		3	3	3	3							3	2	1
CO5									3				2	1
CO6										3			2	1

	Syllabus	
Expt.	Contents	Mapped
No.		CO
	Conduct any ten experiments	
1	Evaluation of ABCD parameters for transmission line.	CO1, CO5, CO6
2	Evaluation of surge impedance loading of transmission line.	CO1, CO5, CO6
3	Determination of sub-Transient reactance of a salient pole	CO2, CO5, CO6
	machine.	
4	Determination of sequence impedances of a cylindrical rotor	CO2, CO5, CO6
	alternator.	
5	Fault Analysis under occurrence of LG Fault & LL Fault.	CO2, CO5, CO6
6	Characteristics of electromagnetic type IDMT over current relay.	CO3, CO5, CO6

7	Characteristics of electro mechanical type over voltage relay.	CO3, CO5, CO6
8	Characteristics of static negative sequence relay.	CO3, CO5, CO6
9	Characteristics of static biased differential relay.	CO3, CO5, CO6
10	Characteristics of microprocessor based under voltage relay.	CO3, CO5, CO6
11	Characteristics of microprocessor based over voltage relay.	CO3, CO5, CO6
12	Formation of Y-Bus by direct inspection method using	CO4, CO5, CO6
	MATLAB.	
13	Transient stability studies using MATLAB.	CO4, CO5, CO6
14	Simulation of power system stabilizer using SIMULINK.	CO4, CO5, CO6
15	Simulation of single area and two area systems using	CO4, CO5, CO6
	SIMULINK.	

## **Text Books**

 J.B. Gupta, "Fundamentals of Switchgear and Protection", S.K. Kataria & Sons, 1st edition 2011.

2. Hadi Saadat, "Power System Analysis", PSA publishing, 3rd edition, 2011.

## **Reference Books**

1. D.P.Kothari and I.J.Nagrath, "Modern power system analysis", TMH Publications, 4th edition, 2011.

2. C.L.Wadhwa, "Electrical power systems", New Age International (P) Limited, 6th edition, 2018.

MIC													
Course	20EE3652	Year	III	Semester	II								
Code													
Course	Professional	Branch	EEE	Course Type	Lab								
Category	Core												
Credits	1.5	L-T-P	0-0-3	Prerequisites	NIL								
Continuous		Semester		Total									
Internal	15	End	35	Marks:	50								
<b>Evaluation:</b>		<b>Evaluation:</b>											

# MICROPROCESSORS AND MICROCONTROLLERS LAB

# **Course Outcomes**

Upon s	successful completion of the course, the student will be able to
CO1	Develop assembly language programs to perform various arithmetic and logical
CO2	Develop assembly language programs to perform various arithmetic and logical operations with 8051 micro-controllers. (L3)
CO3	Experiment various interfacing techniques related to real time applications. (L4)
<b>CO4</b>	Conduct experiments as a team / individual by using equipment available in the
	laboratory.

**CO5** Make an effective report based on experiments.

	Strength of correlations (3: High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			3	3								2	1
CO2		3		3	3								3	2
CO3		3		3	3								3	2
CO4				3	3				3				2	
CO5										3				

	Syllabus								
	List of Experiments								
	Any Five Experiments from the following list of experiments								
Expt.	Contents	Mapped							
INO.		CO							
	Introduction to MASM/TASM.	CO1,							
1	Factorial of a number	CO4, CO5							
1	Sum of squares								
	GCD of two numbers								
2	Arithmetic operations using 8086 Microprocessors – Multi byte addition and	CO1,							
2	subtraction, Multiplication and Division, ASCII – arithmetic operation	CO4, CO5							
2	Logic operations using 8086 Microprocessors – Shift and rotate – Converting	CO1,							
3	packed BCD to unpacked BCD, BCD to ASCII conversion.	CO4, CO5							
4	Sorting of numbers using 8086 Missonrossons	CO1,							
4	Sorting of numbers using 8080 wheroprocessors.	CO4, CO5							
5	Arithmetic operations using 8051 Microcontrollers.	CO2,							
		CO4,							
		CO5							

6	Programs using special instructions like swap, bit/byte, set/reset etc. using	g CO2,							
0	8051 Microcontrollers	CO4, CO5							
7	Decine and Writing on a norallal next	CO3,							
/	Reading and writing on a parallel port.	CO4, CO5							
	Any Five Experiments from the following list of experiments								
0	Constantion of Sine wave	CO3,							
0	Generation of Sine wave	CO4, CO5							
0	DWM concretion	CO3,							
9		CO4, CO5							
10	Traffic light Interface	CO3,							
10		CO4, CO5							
11	Stopper Motor Interface	CO3,							
11		CO4, CO5							
12	8259 Interrupt Controller								
12	8239 – Interrupt Controller	CO4, CO5							
13	Keyboard Interface	CO3,							
15		CO4, CO5							
14	ADC Interface	CO3,							
17		CO4, CO5							
15	Serial communication implementation using 8051 Microcontrollers	CO3,							
15	Serial communication implementation using 6051 wherecontroners	CO4, CO5							
	Learning Resources								
Text	Books								
1.	Douglas V. Hall, "Microprocessors and Interfacing", TMH-Revised 2 nd edition	on, 2006.							
2.	A. K. Ray and K. M. Burchandi, "Advanced Microprocessors and interfa	cing", Tata							
	McGraw Hill, 2 nd edition, 2006.								
3.	Kenneth J. Ayala, "The 8051 Microcontroller Architecture, Programming and	nd							
	Applications", Thomson Publishers, 2 nd Edition, 2004								
Refe	rence Books								
1.	Ajay V. Deshmukh, "Microcontrollers – Theory & Applications", Tata Mo	cGraw Hill,							
_	2005.								
1 2	MA Mazidi P.D. Makinlay I.C. Mazidi "The 8051 Migrocontrollar: A Sy	untoma							

2. M.A. Mazidi, R.D. McKinlay, J.G. Mazidi, "The 8051 Microcontroller: A Systems Approach", Pearson, 2013.

## ELECTRICAL SIMULATION LAB

Course Code	20EE3653	Year	III	Semester (s)	II
Course Category	Professional Core	Branch	Branch EEE Course Type		Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Circuit theory, Power Electronics, Power Systems
Continuous Internal Evaluation	15	Semester End Evaluation	35	Total Marks:	50

Course Outcomes					
	Upon successful completion of the course, the student will be able to				
CO1	<b>Determine</b> the performance of Power System networks in various software tools. (L3)				
CO2	Analyse the performance of Power Electronics circuits in simulation Softwares. (L4)				
CO3	<b>Determine</b> the performance of basic electrical, electronics and Control System circuits				
	in the software tools. (L3)				
CO4	Conduct experiments as a team / individual by using the software available in the				
	laboratory				
CO5	Make an effective report based on experiments.				

## Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			3	3				3			3	3	1
CO2		3			3				3			3	3	1
CO3	3		3		3				3			3	3	1
CO4				3	3				3				3	1
CO5										3			3	1

S. No.	Experiment	Mapped Cos
1	Analysis of three phase power system representing the generator,	CO1, CO4,
	transmission line and load.	CO5
2	Fault analysis of a power system.	
3	Power Flow solution of a power system by Newton Raphson method.	
4	Simulation of single – phase full converter using R, RL & RLE loads.	CO2, CO4,
5	Simulation of single phase AC voltage controller using R, RL & RLE	CO5
	loads.	
6	Simulation of Buck Chopper.	
7	Simulation of Resonant Pulse Commutation Circuit.	
8	Simulation of single phase inverter with PWM control.	
9	Modelling of electrical machine (DC motor).	

10	Simulation of D. C. circuit for determining thevenin's equivalent &	CO3, CO4,
	norton's equivalent.	CO5
11	Response of an RLC circuit by parametric analysis.	
12	Simulation of op- Amp based integrator & differentiator circuits.	
13	PID –open loop & closed loop control.	

- 1. Schaum's outline series—Basic circuit analysis, McGraw-Hill Professional, 2012
- 2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.
- 3. M. H. Rashid, Power Electronic Circuits Devices and Applications, 4th edition, Pearson.

#### **Reference Books**

**Text Books** 

- 1. Handbook on MATLAB, Getting Started Guide, The Mathworks
- 2. PSCAD User's Guide, Manitoba HVDC Research Centre

## e- Resources & other digital material

- 1. <u>https://in.mathworks.com/help/physmod/simscape/ug/op-amp-circuit-inverting-amplifier.html</u>
- 2. https://www.pscad.com/software/pscad/overview
- 3. https://powersimtech.com/

# SOFT SKILLS

Course Code	20SS8651	Year	III	Semester(s)	Π
Course Category	Skill oriented	Branch	Common to All	Course Type	Lab
Credits	2	L-T-P	1-0-2	Prerequisites	-
Continuous Internal Evaluation:		Semester End Evaluation:	50	Total Marks:	50

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	CO1 Develop logical and Analytical skill set through Case Studies(L3)					
CO2	<b>Proficient</b> in giving Presentations (L3)					
CO3	Understand the corporate etiquette (L2)					
CO4	Develop Competency in group discussion & Interviews(L3)					
CO5	Present themselves with corporate readiness(L3)					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01								2		2				
CO2									3	3		2		
CO3								2	1	2		1		
CO4									3	3				
CO5										3				
CO6								2		2				

	SYLLABUS							
Unit No.	Contents							
		CO						
UNIT-1	<ul> <li>Soft Skills- Need &amp; Importance. Intra &amp; Inter Personal Skills</li> <li>Campus to Corporate- Employability Skills- Need of the hour</li> <li>SWOT Analysis.</li> <li>Attitude- Developing Professional &amp; Positive Attitude</li> <li>Perception – Importance of analytical thinking.</li> </ul>							
UNIT-2	<ul> <li>Communication Skills – Need and Methods</li> <li>Body-Language –I; How to interpret and understand other's bodylanguage</li> <li>Body Language-II; How to improve one's own Body Language</li> </ul>							

	Presentation Skills (Seminar Talk & Power Point Presentation)	
UNIT-3	<ul> <li>Goal Setting- Need &amp; Importance</li> <li>Magic of Team Work.</li> <li>Leadership Qualities.</li> <li>Six Thinking Hats.</li> </ul>	
UNIT-4	<ul> <li>Accountability towards Work.</li> <li>Paragraph Writing – Descriptive and Analytical with illustrations</li> <li>Email Writing</li> <li>Work Etiquette</li> </ul>	
UNIT-5	<ul> <li>Group Discussion (Open &amp; Monitored)</li> <li>Resume Preparation</li> <li>Interview Skills</li> <li>Mock Interviews</li> </ul>	
UNIT-6	<ul> <li>Vocabulary- Root Words ( A representative Collection of 50)</li> <li>Vocabulary for Competitive Exams ( A list of 500 high frequency Words)</li> <li>Idioms &amp; Phrases</li> <li>Verbal Analogies</li> <li>Correction of Sentences</li> <li>Sentence Completion – Course of Action</li> <li>Cloze Test</li> <li>Reading Comprehension ( Skimming, Scanning &amp; tackling different kinds of questions)</li> <li>Phrasal Collocations ( Representative collection of 50 meanings along with sentential illustrations)</li> <li>SWAR/ VERSANT Test</li> </ul>	

Learning Resources								
Text Books								
1. The ACE of Soft Skills by Gopalaswamy Ramesh & Mahadevan Ramesh –Pearson								
2. Working with Emotional Intelligence – David Goleman.								
3. Developing Communication Skills by Krishna Mohan and Meera Banerji; MacMillan								
India Ltd.,Delhi.								
Reference Books								
1. Soft Skills: Meenakshi Raman.								
2. Audio—Visuals / Hand Outs (Compiled/Created by T&P Cell, P.V.P.Siddhartha								
Institute of Technology), Board & Chalk and Interactive Sessions								
Semester End Evaluation								
• 15 marks for Report- Which includes 5marks for Resume								
20 Marks for PPT (5M for PPT preparation & Presentation, 5M for Report Preparation on								
PPT)								

# • 35 Marks for External Exam – Which includes

21 marks for Viva with external examiner,

22 marks for Vocab test (Which is essential in Recruitment written test)

5 marks for E-mail Writing (which is important for the student to apply for the job through online, to give consent to job offer and to communicate in the work environment)

# **INDUSTRIAL AUTOMATION & ROBOTICS**

<b>Course Code</b>	20EE6601A	Year	III	Semester	II
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

___

	Course Outcomes
	Upon successful completion of the course, the student will be able to
CO1	<b>Understand</b> the concepts of automation and robotics. (L2)
CO2	Assess the basic idea on automation, material handling and Storage Systems. (L3)
CO3	Analyze the automation, different material transport and Storage Systems. (L4)
CO4	<b>Illustrate</b> the knowledge on social issues and future applications of robotics. (L3)
CO5	<b>Determine</b> the different issues and applications of robotics in real time. (L4)
<b>CO6</b>	Ability to submit a report on industrial automation and robotics.

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3		2									1	2	1
CO3		3	2			1						1	2	1
CO4	3				1		1						2	1
CO5		3						1					2	1
CO6									3	3	1			

Syllabus									
Unit	Contents	Mapped							
No.		CO							
Ι	Introduction to automation: Definition, automation principles and								
	strategies, scope of automation, socio-economic consideration, low cost	CO2							
	automation, Types of automation, basic elements of advanced functions	CO3							
	Levels of automation.	CO6							
II	Automated material transport system: Types of equipment, Design	CO1							
	considerations in material handling, material transport equipment, - Industrial								
	Trucks conveyor systems, automated guided vehicle systems. Analysis for								
	Material Handling Systems- conveyor analysis.								
	Automated Starage Systems, Storage System Derformance Storage	CO1							
TTT	Automated Storage Systems. Storage System Ferrormance, Storage	CO2							
111	Aisle Automated Storage/Retrieval Systems, Carousel Storage Systems.								
	Fundamentals Concepts : Introduction to Robot, Classification of Robots,	CO1							
11/	History of Robotics ,Advantages and Disadvantages of Robots ,Robot	CO4							
IV	Components , Robot Degrees of Freedom , Robot Joints , Robot Coordinates	CO5							
	,Robot Reference Frames , Programming Modes , Robot Characteristics,	CO6							

	Robot Workspace ,Robot Languages ,Robot Applications ,Other Robots and Applications.	
	Social Issues and Future Applications:	
	Social Labor Issues: Productivity and Capital Formations, Robotics and	CO1
V	Labor, Education and Training, International Impacts.	CO4
v	Future Applications: Robot Intelligence, Characteristics of future Robot	CO5
	Tasks, Future Manufacturing Applications of robots, Service Industry and	CO6
	Similar Applications.	

Text Books:										
1.	M.P.Groover	"Automation,	Production	Systems	and	Computer	Integrated	Manufacturing",		
	PHI,3 rd Editio	on,2009.		-		-	_	-		

2. M.P.Groover"Industrial Robotics Technology Programming and Applications", McGraw-Hill 2nd Edition, 2017.

# **Reference Books:**

- 1. John J. Craig, Addison Wesley "Introduction to Robotics", Prentice Hall, 3rd Edition, 2005.
- 2. A K Gupta "Industrial Automation and Robotics", Laxmi Publications, 3rd Edition, 2007.

## **E- Resources :**

https://nptel.ac.in/courses/112105249

http://engineering.nyu.edu/mechatronics/smart/Archive/intro_to_rob/Intro2Robotics.pdf https://nptel.ac.in/courses/112101098

# ADVANCED POWER SYSTEM PROTECTION

Course Code	20EE6601B	Year	III	Semester(s)	П
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Switchgear and Protection
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	<b>Understand</b> various static and numerical relays, protection of generator, transformer and transmission lines. (L2)							
CO2	Apply basic concepts of static and numerical relays to protection system. (L3)							
CO3	<b>Apply</b> wavelet transform, Fourier transform and Digital relaying algorithms to protection system. (L3)							
CO4	<b>Analyze</b> Principle of Operation of; over current and directional relays, distance protection and pilot relaying. (L4)							
CO5	<b>Examine</b> Principle of Operation of different micro processor based relays and protection of generator, transformer and transmission lines. (L4)							
CO6	<b>Ability</b> to understand the concepts of various static and numerical relays, protection of generator, transformer and transmission lines and submit a report.							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1							3	3
CO3	3												3	3
CO4		2											3	3
CO5		2				1							3	3
CO6	3	3						3	3	3			3	3

SYLLABUS							
Unit	Contents						
No.		CO					
Ι	<b>STATIC RELAYS</b> Basic construction of static relays, review of electromagnetic relays, static relays, Comparison of Static relays with electromagnetic relays, Amplitude comparator and Phase comparator, Over current relays, time current characteristic, current setting, time setting, directional relay, static over current relays.	CO1, CO2, CO6					

-		
II	DISTANCE PROTECTION	
	Impedance Relay: operating principle – relay Characteristic –Protective	
	Schemes – Static Impedance Relay – Static reactance relay – static MHO	CO1,
	relay – effect of arc resistance, effect of power surges, effect of	CO2
	transmission line length and source impedance on performance of distance	CO4,
	relays – Quadrilateral relay – Elliptical relay – Swivelling characteristics.	CO6
III	PILOT RELAYING SCHEMES	
	Wire pilot protection, circulating current scheme, balanced voltage scheme, transley scheme, carrier current protection, phase comparison carrier current protection, carrier aided distance protection. <b>NUMERICAL PROTECTION</b> Digital relaying algorithms, differential equation technique, discrete fourier transform technique, wavelet transform technique, removal of dc offset.	CO1, CO2, CO3, CO4, CO6
IV	<b>MICROPROCESSOR BASED PROTECTIVE RELAYS:</b> general block diagram of Microprocessor based protective relays, Microprocessor based over current relay, Microprocessor based distance relays- impedance relay, reactance relay, Mho relay, offset Mho relay.	CO1, CO2, CO5, CO6
V	DIGITAL PROTECTION OF AC MACHINES	
	Faults in synchronous generator, protection schemes for synchronous	CO1,
	generator, digital protection of synchronous generator. Faults in a	CO2,
	transformer, schemes used for transformer protection, digital protection of	CO5,
	Transformer	CO6

8
Text Books
1. MadhavaRao T.S, "Power System Protection, Static Relays with Microprocessor
Applications", TMH, 2 nd edition, 2012
2. Badriram and D N VishwaKarma, "Power System Protection and Switchgear", TMH,
$2^{nd}$ edition, 2014
Reference Books
1. Ravindranth. B and Chander, "Power System Protection and Switch Gear", New Age
International (P) Ltd., 2 nd edition, 2014.

- Ravindra P. Singh, "Switch Gear and Power system Protection", Prentice Hall of India Pvt. Ltd., 2nd edition, 2014.
- 3. Ravindra P. Singh, "Digital Power System Protection", Prentice Hall of India Pvt. Ltd., 1st edition, 2007

Web Links

1. https://nptel.ac.in/courses/108101039

2. https://nptel.ac.in/courses/108107167

# POWER SYSTEM RELIABILITY

Course Code	20EE6601C	Year	III	Semester	П
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	EPGT&D
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	<b>Understand</b> the different probability distributions, Monte Carlo simulation,						
	reliability of Power System. (L2)						
CO2	Apply the knowledge of different probability distributions for power system						
	reliability and Monte Carlo simulation for composite System reliability. (L3)						
CO3	Illustrate Operating reserve Evolution and Distribution Systems (L3)						
CO4	Analyse the reliability of the Power System and Operating Reserve. (L4).						
CO5	Submit a report on probability distributions, Monte Carlo simulation, Operating						
	Reserve and reliability of Power system.						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3											1	2	1
CO3	3					1							2	1
CO4		3											2	1
CO5					1				3	3				

SYLLABUS						
Unit	Contents	Mapped				
No.		СО				
Ι	Basic Probability Theory: Basic probability Concepts, Random variables,	CO1				
	Binomial distribution, Poisson distribution, normal distribution, exponential	<b>CO2</b>				
	distribution, Weibull distribution.	CO5				
	Monte Carlo Method- Random numbers generation, Random variables					
	Simulation output analysis.					
II	Generating System Reliability Analysis: Generation system model,	CO1				
	Capacity outage probability tables, Recursive relation for Capacitive model	<b>CO2</b>				
	building, Unit removal, Evaluation of Loss of Load and energy indices.	<b>CO4</b>				
		CO5				

III	<b>Operating Reserve Evaluation</b> : General concepts, PJM method, Extension	<b>CO1</b>
	to PJM method. Modified PJM method. Postponable outages.	<b>CO3</b>
	r	<b>CO4</b>
		CO5
IV	Reliability Evaluation of Composite System	CO1
	General concepts, State selection, Calculation of the system and load points	<b>CO2</b>
	indices, Required data for composite system reliability evaluation,	<b>CO4</b>
	Application of the Monte Carlo method to composite system reliability	CO5
	evaluation.	
V	Distribution Systems Basic Techniques & Radial Networks: Evaluation	CO1
	techniques, Additional interruption indices, effect of lateral distributor	CO3
	protection, Effect of disconnect, Effect of protection failures, effect of	<b>CO4</b>
	transferring loads.	CO5

Text Books	
1. R. Billinton, R.N.Allan, Reliability Evaluation of F	Power systems, Springer/BS
Publications, Second Editioin 2008.	

2. M. Cepin, Assessment of Power System Reliability: Methods and Applications, Springer Publications, 2011.

## **Reference Books:**

- 1. Richard Elect. Brown, Electric Power Distribution Reliability, CRC Press Publications, Second Edition 2017.
- 2. Dhillan, B.S., Power System Reliability, Safety and Management, Ann Arbor Science Pubications, 1983.

## **E- Resources:**

- 1. https://www.udemy.com/course/power-system-reliability-concepts
- 2. <u>https://ekeeda.com/degree-courses/electrical-engineering/power-system-planning-and-reliability</u>

# **RESTRUCTURED POWER SYSTEMS**

Course Code	20EE6601D	Year	III	Semester(s)	П
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	EPGT&D
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	Understand the concepts of restructuring of power systems. (L2)							
CO2	<b>Interpret</b> the basic knowledge on deregulation and fundamentals of economics (L3)							
CO3	<b>Apply</b> the engineering knowledge on electricity market models, transmission							
	pricing and anchiary service management (L3)							
CO4	Analyze the issues related to different aspects of power system restructuring (L4)							
CO5	<b>Learn</b> various concepts of restructured power system and submit a report.							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1							2	2
CO3	3												2	2
CO4		3					1	1					2	2
C05									3	3			2	2

SYLLABUS						
Unit	Contents	Mapped				
No.		СО				
Ι	Introduction to restructuring of power industry					
	Introduction, reasons for restructuring of power industry, different entities	CO1				
	involved in deregulation, objectives of deregulation of various power systems	CO2				
	across the world, different models of competition-monopoly model,	CO4				
	purchasing agency model, wholesale competition model, retail competition	CO5				
	model, benefits from competitive electricity market.					
II	Fundamentals of Economics	CO1				
	Modeling the consumers, modeling the producers, market equilibrium, pareto	CO2				
	efficiency, global welfare and deadweight loss, short-run costs, long-run	CO4				
	costs, spot market, forward contracts and forward markets.	CO5				

III	Power system operation in competitive environment						
	Introduction, bilateral trading, electricity pools, comparison of pool and	CO1					
	bilateral trading. Role of independent system operator (ISO).						
	Operational planning activities of ISO – in pool markets and bilateral						
	markets, markets participation issues- Market clearing price (MCP).						
IV	Transmission open access and pricing issues						
	Introduction, power wheeling, types of transmission services in open access.						
	cost components, pricing of power transactions, embedded cost based						
	transmission pricing, incremental cost based transmission pricing						
	(descriptive treatment only).	CO5					
V	Ancillary Service Management						
	Introduction to ancillary services, types of ancillary services, classification	CO1					
	of ancillary services, load-generation balancing related services, voltage						
	control and reactive power support services, provisions of ancillary services,						
	co-optimization of energy and reserve services.	CO5					
	co optimization of energy and reserve services.						

Te	l'ext Books											
1.	Kankar Bhattacharya, Math H.J. Bollen, Jaap E. Daalder, " Operation of restructured											
	power systems", Springer publication,1st edition, 2012.											
2	Daniel S. Kirschen and Coran Strbac "Fundamentals of nower system economics"											

2. Daniel S. Kirschen and Goran. Strbac, "Fundamentals of power system economics", John wiley sons, Ltd., 2nd edition, 2018.

# **Reference Books**

- Mohammad Shahidehpour, Hatim Yamin, Zuyi Li, "Market operations in electric power systems: Forecasting, Scheduling and Risk Management", Wiley Interscience publication 1st edition, 2002.
- 2. Loi Lei Lai, "Power System Restructuring and Deregulation: Trading, Performance and Information Technology", Indian Edition, Wiley India Ltd., 1st edition, 2001.

#### e- Resources

https://nptel.ac.in/courses/108/101/108101005/

Course	20CS5601	Year	III	Semester(s)	Π
Course Category	Minor in CSE	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Programming
					with Java
Continuous Internal Evaluation:	30	Semester End Evoluation:	70	Total Marks:	100

## WEB TECHNOLOGIES

	Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to								
CO1	Understand the fundamental concepts of web application development. (L2)								
CO2	Apply basic Front-End Technologies to create static and dynamic web pages. (L3)								
CO3	Apply JDBC Driver to design application and manipulate databases. (L3)								
CO4	Apply the concepts of server side technologies for creating dynamic web applications. (L3)								
	Analyze static and dynamic web pages using Front-End Technologies and server side technologies for posting and retrieving data. (L4)								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2														
CO3														
CO4														

SYLLABUS								
Unit	Contents	Mapped						
No.		CO						
I	<ul> <li>HTML: Understanding 3-tier Web Architecture, Overview of HTTP, Introducing HTML document structure, Creating Headings on a webpage, Working with links, Creating a Paragraph, Working with images, Working with tables, working with frames, Introduction to Forms and HTML controls.</li> <li>Cascading Style Sheets: Inline, Internal and External Style Sheets, Style class, Multiple styles.</li> </ul>	CO1, CO2, CO5						
П	<ul> <li>JavaScript: Introducing DHTML, Introducing JavaScript, Client Side benefits of using JavaScript, Embedding JavaScript in an HTML page, Using Variables, Using Operators, Working with Control Flow statements, Working with functions, Handling Events, Using Arrays, Creating objects in JavaScript.</li> <li>XML: Introduction to XML: Syntax of XML, document structure, and</li> </ul>	CO1, CO2, CO5						

	document type definition.	
III	<b>JDBC:</b> Java Database Connectivity: JDBC Connectivity, Types of JDBC drivers, Steps to write a JDBC application, JDBC Statements, Manipulations on the database.	CO1, CO3, CO5
IV	<b>Servlets :</b> Introduction to Servlets: Lifecycle of a servlet, the servlet api, the javax.servlet package, the javax.servlet.http package, handling http request & responses, Servlets with database connectivity. Introduction to Model View Controller (MVC): Architecture.	CO1, CO4, CO5
v	<b>JSP:</b> Introduction to JSP: The problem with servlet, the anatomy of a JSP page, JSP processing, JSP applications, JSP components, comments, expressions, scriptlets, JSP database connectivity	CO1, CO4, CO5

## 1. Web Technologies, Black Book, Kogent Learning Solutions Inc, Dreamtech Press.

- 2. Java Servlet Programming, Jason Hunter, William Crawford, Second edition, 2003, O'Reilly, 2003
- 3. Programming the World Wide Web, Robert W.Sebesta, Fourth edition, 2007, Pearson.

## **Reference Books**

**Text Books** 

- 1. Internet and World Wide Web How to program, Dietel and Nieto, 2006, PHI/PearsonEducation.
- 2. JAVA The Complete References, Herbert Schildt, Eighth edition, 2014, McGraw Hill.
- 3. Web Technologies, UttamK.Roy, 2004, Oxford Higher Education publication.
- 4. Web Warrior Guide to Web Programming, Bai Ekedaw, 2012, Thompson Publications.

## E- Resources & other digital material

- 1. www.w3schools.com
- 2. Prof. I. Sengupta. (14th, May, 2017), Department of Computer Science & Engineering,
- I.I.T., Kharagpur, "Internet Technologies", NPTEL videos.

Course Code	20CS5651	Year	III	Semester(s)	П
Course Category	Minor in CSE	Branch	EEE	Course Type	Theory
Credits	1	L-T-P	0-0-2	Prerequisites	Java
					Programming
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

# WEB TECHNOLOGIES LAB

	Course Outcomes								
Upon su	Upon successful completion of the course, the student will be able to								
CO1	Apply web technologies to develop applications. (L3)								
CO2	Implement various applications as an individual or team member. (L3)								
CO3	Develop an effective report based on various programs implemented. (L3)								
CO4	Apply technical knowledge for a given problem and express with an effectiveoral communication. (L3)								
CO5	Analyze outputs of web based applications. (L4)								

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
C01	3											2		
CO2					3				3					
CO3										3				
CO4	3									3				
		3												

	SYLLABUS									
Expt • No.	Contents	Mapp ed CO								
1	Design static web sites with html tags by taking different examples.	CO1, CO2, CO3,CO4, CO5								
2	Design web pages using different types of CSS.	CO1, CO2, CO3, CO4, CO5								
3	Apply Client side validations using JavaScript	CO1, CO2, CO3,CO4, CO5								
4	Create an XML file for student/employee/book data andvalidate against DTD	CO1, CO2, CO3,CO4, CO5								
5	Develop different JDBC applications to interact withdatabase.	CO1, CO2,								
---	---------------------------------------------------------------	------------								
5		CO5,CO4,								
6	Create different web applications using servlets	CO1, CO2,								
		CO3,								
		004,005								
-	Davalan different such annlightigns using ICD	CO1, CO2,								
/	Develop different web applications using JSP	CO3,CO4,								
		CO5								
	Build web applications (case studies) based on the choice of	CO1, CO2,								
8	student/faculty	CO3,CO4,								
		<b>CO5</b>								

 Text Books

 1. Web Technologies, Black Book, Kogent Learning Solutions Inc, Dreamtech Press, 2009

 2. JavaServer Pages, Hans Bergsten, Thirrd Edition, 2017, O'Reilly Media

## **Reference Books**

- 1. The Complete reference to J2EE, Jim Keogh, 2017, Tata McGrawHill.
- 2. Advanced Java 2 Platform How to Program^I, H. M. Deitel, P.J. Deitel, S.E. Santry, ThirdEdition, 2016, Prentice Hall Publications.
- 3. Java Servlet Programming, Jason Hunter, William Crawford, Second edition, 2003 O'Reilly.

## E- Resources & other digital material

1. www.w3schools.com

2. Prof. I. Sengupta. (14th , May, 2017), Department of Computer Science & Engineering, I.I.T., Kharagpur, "Internet Technologies", NPTEL videos

Course Code	20IT5601	Year	III	Semester(s)	Π				
Course Category	Minor in IT	Branch	EEE	Course Type	Theory				
Credits	4	L-T-P	4-0-0	Prerequisites	Basics of IT				
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100				

## SOFTWARE ENGINEERING

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the process of software engineering and various processModels. (L2)				
CO2	Design the requirements of software system. (L3)				
CO3	Use various design elements to prepare software system. (L3)				
CO4	Analyze various testing techniques. (L4)				

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1		3								3				3
CO2			3						3	3			3	3
CO3			3						3	3			3	3
CO4			3						3	3			3	3

SYLLABUS						
Unit	Contents	Mapped				
No.		CO				
	Software and Software Engineering: The Nature of Software, The					
	Unique Nature of Web Apps, Software Engineering, Software					
	Process, Software Engineering Practice, Software Myths.	CO1				
Ι	Process Models: A Generic Process Model: Defining a framework	COI				
	activity, Prescriptive Process Models: The Waterfall Model, Incremental					
	Process Model, Evolutionary Process Model, The Unified Process, What					
	is an Agile Process?, XPProcess.					
	Requirements Analysis And Specification: Requirements Gathering					
	and Analysis, Software Requirement Specification (SRS): Characteristics	CO2				
т	of goodSRS, Functional Requirements, Organization of SRS.	02,				
11	Software Design: Overview of the Design Process, How to	CO3				
	Characterize of a Design? Cohesion and Coupling, Approaches to					
	Software Design.					
III	Function-Oriented Software Design: Overview of SA/SD					
	Methodology,	CO1,				
	Structured Analysis, Structured Design, Detailed Design, Design Review.					

	User Interface Design: Characteristics of Good User Interface, Basic	CO3						
	Concepts, Types of User Interfaces, A User Interface Design							
	Methodology.							
	Coding And Testing: Coding, Code Review, Software Documentation,	CO1,						
IV	IV Testing, Unit Testing, Black-Box Testing, White-Box Testing, Debugging,							
	Integration Testing, System Testing.							
	Software Reliability And Quality Management: Software							
	Reliability, Statistical Testing, Software Quality, Software Quality							
	Management System.	CO1,						
V	Software Maintenance: Software maintenance, Maintenance							
	Process Models, Maintenance Cost.							
	Software Reuse: what can be reused? Why almost No Reuse							
	So Far?Basic Issues in Reuse Approach.							

Learning Resources					
Text Books					
1. Software Engineering-A Practitioner's Approach, RogerS.Pressman, Seventh					
Edition McGraw Hill International Edition.					
2. Fundamentals of Software Engineering, Rajib Mall, Third Edition, PHI.					
Reference Books					
1. Software Engineering: A Primer, Waman SJawadekar, TataMc Graw-Hill, 2008					
2. Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.					
3. Software Engineering, Principles and Practices, DeepakJain, Oxford University Press.					
E- Resources & other digital material					

1.<u>https://nptel.ac.in/courses/106101061/</u>

Course Code	20EC5601	Year	III	Semester(s)	Π
Course Category	Minor in ECE	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# CIRCUIT ANALYSIS

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand active and passive elements used in electrical networks (L2)				
CO2	<b>Solve</b> problems on networks by applying different network analysis techniques (L3)				
CO3	Analyze networks using methods like mesh analysis, nodal analysis and network				
	theorems to make inferences/ find evidence to support solutions/ conclusions (L4)				
CO4	<b>Inspect</b> the given circuit and situation to find the bandwidth, selectivity and quality				
	factor of a series and parallel resonant circuits (L4)				

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2		2		2
CO2	3									3				2
CO3		3								3				2
CO4		2								2				1

SYLLABUS						
Unit	Contents	Mapped				
No.		CO				
Ι	<b>Introduction to Electrical Circuits:</b> Basic Concepts of active and passive elements and their V-I relations, Ohm's Law, Sources (dependent and independent), Kirchhoff's laws– Resistors in series and parallel circuits– Mesh current and node voltage method of analysis for D.C circuits.	CO1- CO3				
Π	Network Reduction and Network Theorems for DC Circuits: Network reduction techniques (series, parallel, series - parallel, star-to- delta and delta-to-star transformation), source transformation technique, nodal analysis and mesh analysis, Super node and Super mesh analysis, Thevenin's and Norton's theorems – Superposition theorem–Maximum power transfer theorem–Reciprocity Theorem.	CO1-CO3				
III	<b>Sinusoidal Steady-State Analysis:</b> Periodic waveforms (determination of RMS, average value, peak factor and form factor), concept of phase angle, phase difference – waveforms and phasor diagrams, rectangular and polar formsof representations, power factor, real, reactive and apparent power.	CO1- CO3				

	Resonance and Coupled circuits:	CO1-CO4							
IV	<b>IV</b> Series and parallel resonance, the frequency response–Quality factor and								
	Bandwidth								
	Two port Networks Analysis:	CO1,CO2,							
$\mathbf{V}$	Open circuit Impedance & Short circuit Admittance parameter,	CO4							
•	Transmission parameters, Hybrid parameters and their inter relations.								

- Text Books

   1. W. Hayt and Jack E.Kemmerley -Engineering Circuit Analysis, McGraw HillCompany, 6thEd.
- 2. Van Valkenburg Network Analysis; Prentice-Hall of India Private Ltd.

## **Reference Books**

- 1. C. K. Alexander and Mathew N.O. Sadiku-Fundamentals of Electrical Circuits, Mc.Graw HillEducation.
- 2. Carlo, Lin, Linear Circuit Analysis, Oxford publications.
- 3. M. Nahvi & J.Edminister, Electric Circuits (Schaum's outlines) 5th Ed., McGraw Hill.
- 4. David A. Bell, Electric Circuits, Oxford publications.

# E- Resources & other digital material

- 1. 1.https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desktop
- 2. https://www.tutorialspoint.com/network_theory/network_theory_quick_guide.htm
- 3. https://nptel.ac.in/courses/108/105/108105159/

Course Code	20EC5602	Year	III	Semester(s)	Π
Course Category	Minor in IoT	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# INDUSTRIAL AND MEDICAL IoT

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Understand the basics of Industrial IOT and Medical IOT (L2)						
CO2	Identify the technical and industrial requirement procedures for IIOT applications (L3)						
CO3	Develop various applications using IIOT architectures (L3)						
CO4	Choose selected IOT devices for understanding the system architecture of medical IOT (L3)						
CO5	Analyze privacy and security measures for industry and medical standard solutions (L4).						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3													
CO3	3		3										3	3
CO4	3													
CO5		3												

	SYLLABUS						
Unit	Contents	Mapped					
No.		СО					
Ι	<b>Introduction to Industrial IoT</b> : Technical requirements, IoT background-History and definition, IoT enabling factors, IoT applications, IoT key technologies, I-IoT, IoT and I-IoT – similarities and differences, Industry environments and scenarios covered by I-IoT.	CO1, CO2					
II	<b>Understanding the Industrial Process and Devices Technical</b> <b>requirements:</b> The industrial process-Automation in the industrial process, Control and measurement systems, Types of industrial processes.	CO1, CO2					
III	<b>Industrial Data Flow and Devices</b> : Technical requirements, The I-IoT data flow in the factory, Measurements and the actuator chain .Sensors, The converters - Digital to analogical, Analog to digital, Actuators, Controllers - Microcontrollers, Embedded microcontrollers, Microcontrollers with external memory, DSP's. Industrial protocols - Automation networks, The fieldbus, Developing Industrial IoT and	CO1,					

	Architecture- Introduction to the I-IoT platform and architectures, OSGi,						
	microservice, containers, and server less computing, The standard I-						
	IoT flow.						
	Internet of Medical Things Introduction and system architecture:						
	Introduction, IoMT Devices-On-Body Devices, In- Home Devices,	001					
IV	Community Devices, In-Clinic Devices, In- Hospital Devices ,IoMT	C01-					
	System Architecture-Data Collection Layer, Data Management Layer,	CO4					
	Medical Server Layer.						
	Internet of Medical Things Security Threats, Security Challenges and						
	Potential Solutions: IoMT Attack Types, Challenges in IoMT Security	CO1-					
V	Schemes, Current Security Plans for IoMT, Potential Solutions for	CO5					
	Security Vulnerabilities.						

1.	Veneri, Giacomo, and Antonio Capasso- Hands-on Industrial Internet of Things: Create
	a Powerful Industrial IoT Infrastructure Using Industry 4.0, 1 st Ed., Packt Publishing Ltd,
	2018.

2. D. Jude Hemanth and J. Anitha George A. Tsihrintzis- Internet of Medical Things Remote Healthcare Systems and Applications, covered by Scopus.

#### **Reference Books**

**Text Books** 

1. Alasdair Gilchrist- Industry 4.0: The Industrial Internet of Things, 1st Ed., Apress, 2017.

2. Reis, Catarina I., and Marisa da Silva Maximiano, eds.- Internet of Things and advancedapplication in Healthcare, 1st Ed., IGI Global, 2016.

E- Resources & other digital material

1. https://www.coursera.org/specializations/developing-industrial-iot#courses

2. https://www.coursera.org/learn/industrial-internet-of-things.

3. https://www.coursera.org/learn/internet-of-things-sensing-actuation

MODERIA LECHAOLOGI IIA AUTOMODILE ENGIALERING									
Course Code	20ME5601	Year	III	Semester(s)	Π				
Course Category	Minor in Automobile Engineering	Branch	EEE	Course Type	Theory				
Credits	4	L-T-P	3-1-0	Prerequisites	NIL				
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100				

# MODERN TECHNOLOGY IN AUTOMOBILE ENGINEERING

Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Understand the current technologies in the automobile industry (L2)						
CO2	Apply fundamental concepts on digitalizing the engine controlssystem and subsystem arrangements in automobiles. (L3)						
CO3	Apply fundamental knowledge of automobile engineering fordesign of Electronic sensor and comfort systems. (L3)						
CO4	Analyse state of art technology in automobile field for design ofsafety and security systems. (L4)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1			2	2					3	2	1
CO2	2	2	1			2	2					3	2	1
CO3	2	2	1			2	2					3	2	1
CO4	2	2	1			2	2					3	2	1

SYLLABUS						
Unit	Contents	Mapped				
No.		CO				
I	<b>Recent Trends:</b> Common rail direct injection diesel engine, dual fuel and multi fuel engine, free piston engine, gasoline direct injection engine, homogeneous charge compression ignition engine, lean burn engine, stratified charge ignition engine, variable compression ratio engine, Wankel engine.	CO1				
Π	<b>Digital Engine Control System:</b> Open loop and closed loop control system; engine cooling and warm-up control; acceleration, deceleration and idle speed control; integrated engine control system; exhaust emission control engineering; on-board diagnostics; future automotive electronic systems					
III	<b>Basic sensor arrangements:</b> Types of sensors – oxygen sensor, hot wire anemometer sensor, vehicle speed sensor, detonation sensor, accelerometer sensor, crank position sensor. Microprocessor and microcomputer controlled devices in automobiles such as travel information system, keyless entry system, automatic transmission system, electronic steering system.	CO1, CO2, CO3				

warning and alarm instruments : Brake actuation warning system, raficators, flash system, oil pressure warning system, engine over heat warning system, air pressure warning system, speed warning system, door ock indicators, neutral gear indicator, horn design, permanent magnet horn, air & music horns. Wind shield wiper. window washer, instrument wiring system and electromagnetic interference suppression, wiring circuits for instruments, electronic instruments, dash board illumination.	CO1, CO3, CO4
Safety system: Antilock braking system, air bag restraint system, voice varning system, seat belt system, road navigation system, anti theft system.	CO1, CO4
	aficators, flash system, oil pressure warning system, engine over heat arning system, air pressure warning system, speed warning system, door ock indicators, neutral gear indicator, horn design, permanent magnet orn, air & music horns. Wind shield wiper. window washer, instrument iring system and electromagnetic interference suppression, wiring rcuits for instruments, electronic instruments, dash board illumination. afety system: Antilock braking system, air bag restraint system, voice varning system, seat belt system, road navigation system, anti theft system.

- Text Books
  1. Heinz Heisler, Advanced Engine Technology, SAE International Publications, USA, 1998.
  - 2. A.W. Judge, Modern Electrical Equipment of Automobiles, Chapman & Hall, London, 1992.
  - 3. William B. Ribbens -Understanding Automotive Electronics, 5th edition- Butter worthHeinemann, 1998
  - 4. A.P. Young, &L.Griffiths, Automobile Electrical Equipment, English Language Book Society& New Press, 1990.

## **Reference Books**

- 1. W.H.Crouse, Automobile Electrical Equipment, McGraw Hill Book Co Inc., New York, 1980.
- 2. Robert N Brady, Automotive Computers and Digital Instrumentation, Prentice Hall, Eagle WoodCliffs, New Jersey, 1988.
- 3. P L. Kohli, Automotive Electrical Equipment, Tata McGraw Hill Publishing Co., Delhi, 2004

## E- Resources & other digital material

1.https://nptel.ac.in/courses/107/106/107106088/

2.<u>https://nptel.ac.in/courses/107/103/107103084/</u>

3.<u>https://www.avnet.com/wps/portal/apac/resources/article/automotive-electronics-top-5-tech-trends-tomorrows-smart-cars/</u>

Course Code	20ME5602	Year	III	Semester(s)	П
Course Category	Minor in Digital Manufacturing	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Basic
					Manufacturing
					Processes
Continuous		Semester	-0		100
Internal	30	End	70	Total	100
<b>Evaluation:</b>		<b>Evaluation:</b>		Marks:	

# **DESIGN FOR ADDITIVE MANUFACTURING**

	Course Outcomes									
Upon s	Upon successful completion of the course, the student will be able to									
CO1	Illustrate the need of design for additive manufacturing and represent synthetic curves and surfaces using mathematical models. (L2)									
CO2	Apply design for additive manufacturing guidelines indesigning of mass customized products. (L2)									
CO3	Discuss design for minimal material, functionality latticestructures using topology optimization. (L2)									
CO4	Identify methods of powder handling and standardsrelated to Additive Manufacturing. (L2)									

	Contribution of Course Outcomes towards achievement of Program Outcomes &														
	Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3		1									2			
CO2	3		1									2			
CO3	3		1									2			
CO4	3		1									2			

	SYLLABUS						
Unit	Unit Contents						
No.		CO					
I	<b>Introduction to Design for Additive Manufacturing (DfAM):</b> Introduction to geometric modelling, Modelling of Synthetic curves like Hermite, Bezier and B-spline, Parametric Representation of freeform surfaces, Design freedom with AM, Need for Design for Additive Manufacturing (DfAM), CAD tools vs. DfAM tools, Requirements of DfAM methods, General Guidelines for DfAM, The Economics of Additive Manufacturing, Design to Minimize Print Time, Design to Minimize Post-processing.	CO1					
II	<b>Design Guidelines for Part Consolidation:</b> Design for Function, Material Considerations, Number of Fasteners, Knowledge of Conventional DFM/DFA, Assembly Considerations, Moving Parts, Part redesign, Opportunities for part consolidation, challenges with part consolidation.	CO2					

	<b>Design for Improved Functionality:</b> Multi scale design for Additive	CO3
ш	manufacturing, Mass customization, Biomimetics, Generative design,	
	Design of multi-materials and functionally graded materials	
	Design for Minimal Material Usage: Topology Optimization, Modelling	
	of Design space, defining design and manufacturing constraints,	
<b>TX</b> 7	performing analysis for weight reduction, maximize stiffness, minimize	
1 V	displacement, Post-processing and Interpreting Results, Applications of	CO3
	Topology Optimization, Topology Optimization Tools, Design of cellular	
	and lattice structures, Design of support structures.	
	Other AM Considerations: Designer Machine Operator Cooperation,	
	Health and Safety, Material Exposure, Gas Monitoring, Gas Exhaust,	CO1,
V	Material Handling, Risk of Explosion, AM Part Standardization and	CO4
	Certification.	

8
Text Books
1. A Practical Guide to Design for Additive Manufacturing, Diegel, Olaf, Axel Nordin,
andDamien Motte, Springer, 2020.
2. The 3D Printing Handbook: Technologies, Design and Applications, Redwood, Ben,
FilemonSchoffer, and Brian Garret, 3D Hubs, 2017.
Reference Books
1. Design for Advanced Manufacturing: Technologies and Process, Laroux K,
Gillespie,McGrawHill, 2017.
2. Additive Manufacturing Technologies, Gibson, Ian, David W. Rosen, Brent Stucker,
andMahyar Khorasani, Springer, 2021.
E- Resources & other digital material
1.https://courses.gen3d.com/courses/enrolled/988400
2. https://markforged.com/resources/blog/design-for-additive-manufacturing-

dfam

Course Code	20CE5601A	Year	III	Semester(s)	II
Course Category	Minor in Civil Engineering	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	20BS1101- Calculus and Linear Algebra 20BS1201- Differential Equations and Vector Calculus 20BS1104- Applied Physics
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

# **BASIC MECHANICS OF FLUIDS**

	Course Outcomes									
Upon su	Upon successful completion of the course, the student will be able to									
CO1	<b>Understand, analyze</b> and <b>apply</b> various fluid properties to solve the fluid problems and usevarious devices for measuring fluid pressure. (L4)									
CO2	<b>Apply</b> hydrostatic law to find hydrostatic force on various submerged planes and use of law of conservation mass to fluid flow. (L3)									
CO3	<b>Apply</b> the concept of boundary layer theory to determine lift and drag forces on a submergedbody. (L3)									
CO4	Apply appropriate flow equations and principles to analyse pipe flow problems. (L4)									
CO5	<b>Apply</b> Bernoulli's equation to fluid flow problems and use of different fluid flow measuringdevices. (L3)									

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02													
C01	2	2	2	2	2	3						3	2	
CO2	2	2	2	2	2	2						2	2	
CO3	3	3	3	3	3	2						2	3	
CO4	2	2	2	2	2	3						3	2	
CO5	2	2	2	2	2	2						2	2	

SYLLABUS										
Unit	Contents									
No.		CO								
I	INTRODUCTION: Dimensions and units – Physical properties of fluids specific gravity, viscosity, surface tension, vapour pressure and their influences on fluid motion. Pressure at a point-Pascal's law, Hydrostatic law, Pressure and its Measurement: Atmospheric, gauge and vacuum pressure- measurement of pressure. Pressure gauges, Manometers: differential manometers.	CO1								

II	<ul> <li>HYDROSTATIC FORCES: Hydrostatic forces on submerged, horizontal, vertical and inclined surfaces, Total pressure and centre of pressure derivations and problems.</li> <li>FLUID KINEMATICS- Description of fluid, stream line, path line and streak lines and stream tube. Classification of flows- steady, unsteady, uniform non-uniform, laminar, turbulent, rotational, irrotational flows, Equation of continuity for one, three dimensional flows.</li> </ul>	CO1,CO2
ш	<b>FLUID DYNAMICS:</b> Surface and body forces – Euler's and Bernoulli's equations for flow along a stream line for 3-D flow, Momentum equation and its application – forces on pipe bend. Boundary layer – concept, characteristics of boundary layer along a thin flat plate, Separation of boundary layer, Flow around submerged objects- drag and lift.	CO1,CO3
IV	<ul> <li>LAMINAR FLOW: Reynold's experiment- Characteristics of laminar and turbulent flows. Flow between fixed parallel plates, Flow through horizontal pipes.</li> <li>FLOW THROUGH PIPES – Laws of fluid friction – Darcy's equation, minor losses Pipes in series- pipes in parallel-equivalent pipe, total energy line andhydraulic gradient line.</li> </ul>	CO1,CO4
v	<b>MEASUREMENT OF FLOW:</b> Pitot tube, Venturi meter and orifice meter. Classification of orifices, Flow over rectangular, triangular, trapezoidal notch, Broad crested weirs	CO5

#### **Text Books**

- 1. P.N. Modi and S.M. Seth, Fluid Mechanics (18th edition) Standard Book House,2017.
- 2. A.K. Jain, Fluid Mechanics, Khanna publishers, 2010

#### **Reference Books**

- 1. L. Victor, Streeter and E. Benjamin Wylie, Fluid Mechanics, Tata McGrawHill,1985.
- 2. M. Franck White, Fluid Mechanics, Tata McGraw Hill, 2017.
- 3. K. Subramanya, Theory and Applications of Fluid Mechanics, Tata McGrawHill,2001.
- 4. A text book of Fluid Mechanics and Hydraulic Machines by R. K. Rajput, S.chand
- Technical publishers

# E- Resources & other digital material

- 1. Fluid Mechanics virtual labs. http://eerc03-iiith.vlabs.ac.in/
- 2. https://nptel.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/fluid_mechanics/index.htm
- 3. https://nptel.ac.in/courses/105105119.

# IV B.TECH I SEMESTER SYLLABUS

Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks
20EE4701	Professional Elective-III	3	3	0	0	30	70	100
20EE4702	Professional Elective-IV	3	3	0	0	30	70	100
20EE4703	Professional Elective -V	3	3	0	0	30	70	100
20HS7701	Humanities and Social Sciences Elective	3	3	0	0	30	70	100
	Open Elective -III	3	3	0	0	30	70	100
	Open Elective- IV	3	3	0	0	30	70	100
20SA8752	IOT Applications to Electrical Engineering	2	1	0	2	-	50	50
20EE3781B/C	Industrial/Research Internship	1.5	0	0	0	-	-	-
Total		23	19	0	2			

## IV B.Tech., I Semester

**Professional Elective-III** Continuous End Total Course Title L Т Р Internal Credits Semester Marks Code Evaluation Examination 20EE4701A Power System 3 3 0 0 30 70 100 Operation and control 20EE4701B Energy Conservation 3 3 0 0 30 70 100 and Audit 20EE4701C Power Quality 3 3 0 0 30 70 100 20EE4701D VLSI Design 3 3 0 0 30 70 100 20EE4701E Operating Systems 3 3 0 0 30 70 100

	Professional Elective-IV												
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks					
20EE4702A	Real Time Control of Power Systems	3	3	0	0	30	70	100					
20EE4702B	Electrical Vehicles	3	3	0	0	30	70	100					
20EE4702C	Digital Control Systems	3	3	0	0	30	70	100					
20EE4702D	Embedded Systems	3	3	0	0	30	70	100					
20EE4702E	Database Management Systems	3	3	0	0	30	70	100					

L - Lecture T - Tutorial P – Practical

	Professional Elective-V											
Course Code	Title	Credits	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks				
20EE4703A	Smart Grid Technologies	3	3	0	0	30	70	100				
20EE4703B	AI Techniques in Electrical Engineering	3	3	0	0	30	70	100				
20EE4703C	HVDC and FACTS	3	3	0	0	30	70	100				
20EE4703D	Switched Mode Power Conversion	3	3	0	0	30	70	100				
20EE4703E	Machine Learning	3	3	0	0	30	70	100				

	HUMANITIES AND SOCIAL SCIENCES ELECTIVE COURSES										
Course Code	Title	Cre dits	L	T	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks			
20HS7701A	Managerial Economics and Financial Accountancy	3	3	0	0	30	70	100			
20HS7701B	Human Resource Management	3	3	0	0	30	70	100			
20HS7701C	Entrepreneurship Management	3	3	0	0	30	70	100			
20HS7701D	Organizational Behavior	3	3	0	0	30	70	100			
20HS7701E	Construction Management	3	3	0	0	30	70	100			
20HS7701F	Industrial Engineering Management	3	3	0	0	30	70	100			
20HS7701G	Project Management	3	3	0	0	30	70	100			

L - Lecture T - Tutorial P – Practical

	<b>Open Elective -III</b>											
Course Code	Title	Ĉre dits	L	T	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks				
20CE2701A	Disaster Management and Preparedness	3	3	0	0	30	70	100				
20EC2701B	Embedded and Real time Systems	3	3	0	0	30	70	100				
20EC2701C	Research Methodology	3	3	0	0	30	70	100				
20EC2701B	E-Waste Management	3	3	0	0	30	70	100				
20IT2701A	Fundamentals of Data Science	3	3	0	0	30	70	100				
20ME2701A	Operations Research	3	3	0	0	30	70	100				
20ME2701B	Management Information Systems	3	3	0	0	30	70	100				

	Open Elective -IV											
Course Code	Title	Ĉre dits	L	T	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks				
20CE2702A	Environmental Management & Audit	3	3	0	0	30	70	100				
20CS2702A	Data Base Management Systems	3	3	0	0	30	70	100				
20EC2702A	Telecommunications	3	3	0	0	30	70	100				
20EC2702B	Satellite Communications	3	3	0	0	30	70	100				
20IT2702A	Fundamentals of Artificial Intelligence	3	3	0	0	30	70	100				
20ME2702A	Mechatronics	3	3	0	0	30	70	100				
20ME2702B	Robotics	3	3	0	0	30	70	100				

L - Lecture T - Tutorial P – Practical

	HONORS -IV											
Course Code	Title	Credit s	L	Т	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks				
20EE6701A	Advanced Electrical Drives	4	3	1	0	30	0 70					
20EE6701B	Grid Integration of Renewable Energy Systems	4	3	1	0	30	70	100				
20EE6701C	Special Electrical Machines	4	3	1	0	30	70	100				
20EE6701D	Semiconductor Device Modeling	4	3	1	0	30	70	100				

# MINOR COURSES

Course Code	Title	Credits	L	Τ	Р	Continuous Internal Evaluation	End Semester Examination	Total Marks	Minor in
20CS5701	Cloud Computing	4	4	0	0	30	70	100	CSE
20IT5701	Cloud Computing	4	4	0	0	30	70	100	IT
20EC5701	Communication Systems	4	3	1	0	30	70	100	ECE
20EC5702	IOT Networks	4	3	1	0	30	70	100	IoT
20ME5701	Alternate Fuels and Emission control in Automotive	4	3	1	0	30	70	100	Automo bile Engineer ing
20ME5702	INDUSTRY 4.0 and IIoT	4	3	1	0	30	70	100	Digital Manufac turing
20CE5701A	Basic Surveying	4	3	1	0	30	70	100	Civil

# POWER SYSTEM OPERATION AND CONTROL

Course Code	20EE4701A	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	PSA
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes								
Upon su	Upon successful completion of the course, the student will be able to								
CO1	Understand the basic concepts of economic load dispatch, hydrothermal								
	scheduling, load frequency control, power factor improvement and voltage control								
	(L2).								
CO2	Demonstrate the different types of hydrothermal scheduling, economic operation								
	of power systems and load frequency control. (L3)								
CO3	<b>Illustrate</b> the concepts of power factor improvement and voltage control in power								
	systems. (L3)								
CO4	Analyze the optimal operation of hydro and thermal power plants, single area and								
	two area systems. (L4)								
CO5	Analyze the most economical power factor for constant kW& kVA loads, and								
	various voltage control devices. (L4)								
CO6	Learn various power system operation concepts and submit a report.								

## Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	Suchan of correlations (Silligh, 2. Medium, 1.20%)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					2							3	2
CO3	2							2				2	3	2
CO4		3				1							3	2
CO5		2						1				1	3	2
CO6	3	3							3	3			3	2

	SYLLABUS							
Unit	Contents	Mapped						
No.		СО						
Ι	<b>Economic Operation of Power Systems:</b> Economic dispatch in Thermal Power Station, - Heat rate Curve - Cost Curve - Incremental fuel Cost and Incremental Production costs, Input-output characteristics, Optimum operation of thermal units without and with transmission losses Numerical problems - Loss Coefficients, General transmission line loss formula (Descriptive treatment only).	CO 1 CO 2 CO 4 CO 6						

	-	
II	Hydrothermal Scheduling: Optimal scheduling of hydrothermal	CO 1
	system, hydroelectric power plant models, types of scheduling problems,	<b>CO 2</b>
	Mathematical formulation and solution Technique of hydrothermal	<b>CO 4</b>
	scheduling problem using gradient method.	CO 6
III	Single area load frequency control: Necessity of keeping frequency	CO 1
	constant, concept of control area, Block diagram representation of an	<b>CO 2</b>
	isolated power system, Steady state analysis , Dynamic response ,	CO 4
	Proportional plus Integral control of single area and its block diagram	CO 6
	representation.	
Ι	Two area load frequency control: Development of block diagram of a	CO 1
V	two area system and its Static and dynamic responses, Tie-line bias	<b>CO 2</b>
	control, comparison of load frequency control and Economic dispatch	<b>CO 4</b>
	control.	CO 6
V	<b>Power factor and Voltage Control:</b> Causes of low <b>p</b> f methods of	000
·	improving n f static canacitor synchronous condensers and phase	CO 1
	advancers most economical p f for constant kW load and constant	CO 3
	kVA type loads	CO 5
	Importance of voltage control shunt canacitors series canacitors and	
	their location in the newer system	CO 6
	i inen iocation in the power system.	

- 1. I.J.Nagrath and D.P.Kothari, "Modern Power System Analysis", Tata McGraw Hill Publishing Company Ltd, 4th edition, 2011.
- 2. AbhijitChakrabarti, SunitaHalder, "Power System Analysis: Operation and Control", Prentice Hall of India3rd edition, 2010.

#### **Reference Books**

**Text Books** 

- 1. O.I.Elgerd, "Electric Energy systems Theory", Tata McGraw-hill Publishing Company Ltd., 2nd edition,2004.
- 2. Allen J.Wood and bruceF.Wollenberg, "Power generation, operation and control", 2nd edition.
- 3. John Grainger and William Stevenson, "Power System Analysis", Tata McGraw Hill, 2017.
- 4. HadiSaadat, "Power System Analysis", McGraw Hill, 2004.

Web Links

1. https://nptel.ac.in/courses/108102047

# ENERGY CONSERVATION AND AUDIT

Course Code	20EE4701B	Year	IV	Semester(s)	Ι
Course Category	Professional Elective III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to								
CO1	Understand the concepts of energy conservation and audit. (L2)								
CO2	Apply the knowledge of energy scenario. (L3)								
CO3	Analyze the theory of energy management and audit. (L4)								
CO4	Apply the concepts of energy efficiency in electrical and industrial Systems. (L3)								
CO5	<b>Examine</b> the different energy efficient technologies in electrical system.(L4)								
CO6	Show the ability to apply the various energy conservation and audit concepts and submit a report.								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													3	3
CO2	2						2						3	3
CO3		2				2							3	3
CO4	3												3	3
CO5		3											3	3
CO6									3	3		3	3	3

	SYLLABUS							
Unit	Contents	Mapped						
No.		СО						
Ι	Energy Scenario							
	Renewable and non-renewable energy, Indian energy scenario,	<b>CO1</b>						
	integrated energy policy, energy intensity on purchasing power parity,							
	Energy sector reforms, energy and environment, energy security, energy							
	conservation and its importance, Energy Conservation Act-2001 and its							
	features.							
II	Energy Management & Audit							
	Definition, energy audit, need, types of energy audit and approach,	CO1						
	understanding energy costs, bench marking, energy performance,	CO3						
	matching energy use to requirement, maximizing system efficiencies,	CO6						

	optimizing the input energy requirements, fuel & energy substitution,	
	energy audit instruments	
III	Energy Efficiency in Electrical Systems	
	Electrical system: Electricity billing, electrical load management and	
	maximum demand control, power factor improvement benefits, selection	<b>CO1</b>
	and location of capacitors, performance assessment of PF capacitors,	CO4
	distribution and transformer losses.	004
	Electric motors: motor efficiency, factors affecting motor performance,	CO6
	rewinding and motor replacement issues, energy saving opportunities	
	with energy efficient motors.	
IV	Energy Efficiency in Industrial Systems	
	Compressed Air System: Types of air compressors, compressor	CO1
	efficiency, efficient compressor operation, compressed air system	CO4
	components, capacity assessment, leakage test, factors affecting the	
	performance and savings opportunities in HVAC.	C06
	Fans and blowers: Types, performance evaluation, efficient system	
	operation flow control strategies and energy conservation opportunities.	
V	Energy Efficient Technologies in Electrical Systems	
	Maximum demand controllers, automatic power factor controllers	CO1
	energy efficient motors soft starters with energy saver variable speed	C05
	drives energy efficient transformers electronic ballast occupancy	CO6
	sensors energy efficient lighting controls energy saving potential of	
	sensors, energy enrelent lighting controls, energy saving potential of	
	each technology.	

Text	Books										
1.	Guide	books	for	National	Certification	Examination	for	Energy	Manager	/	Energy
	Auditors Book-1, General Aspects (available online)										
0	0.1	1 1	C	NT /* 1	a cristic	<b>F</b> • /•	c	г	N /	1	г

- 2. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-3, Electrical Utilities (available online)
- 3. S. C. Tripathy, —Utilization of Electrical Energy and Conservation, McGraw Hill, Reprint 1991.

## **Reference Books**

- 1. W.R. Murphy &G. Mckey Butterworths, "Energy Management", New Age International Publishers, 2007
- 2. Amit kumar Tyagi, Hand book on Energy Audit and Management, TERI (Tata Energy Research Institute).
- Rakosh Das Begamudre, Energy conversion systems, New Age International Publishers 10th Edition,2000

Web Links

1. Success stories of Energy Conservation by BEE, New Delhi (www.bee-india.org)

# POWER QUALITY

Course Code	20EE4701C	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Electrical Power Generation, Transmission & Distribution
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes									
Upon successful completion of the course, the student will be able to										
CO1	Outline definitions of common power quality phenomena. (L2)									
CO2	Identify different PQ phenomena causes and effects (L3)									
CO3	Apply mitigation techniques to solve power quality problems (L3)									
<b>CO4</b>	Analyze the measured data for PQ monitoring (L4)									
CO5	Investigate various power quality problems and submit a report									

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1														
CO2	3		3			1	2				2	1	3	1
CO3	2		2		1	1	1				1	1	2	1
CO4		2	2	1		2	2	1			2	2	3	1
CO5			3			3			3	3		3	3	1

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
I	<b>Power Quality-an Overview:</b> Power Quality definition, the power quality evaluation procedure, and General classes of power quality problems: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variations.	CO1 CO2 CO4 CO5
II	<b>Voltage sags and Interruptions:</b> Sources of sags and Interruptions, Estimating Voltage sag performance-Are of vulnerability, equipment sensitivity to voltage sags, transmission system sag performance evaluation, and utility distribution system sag performance Evaluation	^a CO1 CO2 CO4 CO5

III	<b>Fundamental Principles of Protection:</b> Fundamental principles of protection, solutions at the end user level, Ferro- resonant transformers, magnetic synthesizers, standby UPS, hybrid UPS and superconducting magnetic energy storage (SMES) devices	CO1 CO3 CO4 CO5
IV	Fundamentals of Harmonics:	CO1
	Harmonic distortion, voltage versus current distortion, harmonics versus	CO2
	transients, power system quantities under non-sinusoidal conditions,	CO3
	harmonic indexes, harmonic sources from commercial loads, harmonic	CO4
	sources from industrial loads. Devices for controlling harmonics	CO5
V	Distributed Generation and Power Quality Monitoring:	CO1
	Resurgence of DG, DG Technologies, Interface to the Utility System,	CO2
	Power Quality issues, operating conflicts. Monitoring Consideration Power	CO4
	quality measurement Equipment	CO5

	Learning Resources							
Text	Books							
1.	R.C.Dugan, MF.Mc.Granaghan, S.Santoso and HW. Beaty, "Electrical Power Systems							
	Quality", McGraw Hill, Third edition, 2004.							
2.	Sankaran. C, "Power Quality", CRC Press, 1st Edition, 2017.							
Refe	rence Books							
1.	M.H.J.Bollen, "Understanding Power Quality Problems- Voltage sag and Interruptions",							
	IEEE Press, 2001.							
e-Res	sources							
1.	https://nptel.ac.in/courses/108107157							

## VLSI DESIGN

Course Code	20EE4701D	Year	IV	Semester	Ι
Course Category	Professional Elective-III	ssional ive-III Branch EEE Course Ty		Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	D&AC
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon su	ccessful completion of the course, the student will be able to						
CO1	Understand MOS transistor fabrication, design and testing processes. (L2)						
CO2	Choose an appropriate knowledge on the Properties and testing processes of MOS						
	Technologies. (L3)						
CO3	Develop the layout of any logic circuit which helps to understand and estimate parasitic						
	of any logic circuit. (L3).						
<b>CO4</b>	Illustrate the Electrical Properties, testing processes of MOS and BiCMOS Circuits.						
	(L4).						
CO5	Analyze the different design process to build a circuit. (L4)						
CO6	Ability to do various applications in VLSI circuits and submit a report.						

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3							1					2	1
CO3	3		1		1								2	1
CO4		3					1					1	2	1
CO5		3				1							2	1
CO6									3	3	1			

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
Ι	Introduction to MOS Technology: Integrated Circuit (IC) Era, Metal-Oxide semiconductor (MOS) and related VLSI technology, basic MOS transistors, NMOS & CMOS fabrication, comparison of NMOS, CMOS, BICMOS, technologies. Electrical Properties of MOS circuits: Drain current vs Drain Source voltage relationships, MOS transistor threshold voltage, figure of merit-ω ₀ ,Transconductance-g _m , g _{ds} , pass transistor, NMOS inverter, CMOS inverter	CO1,CO2 CO4 & CO6
ΙΙ	<b>VLSI Circuit Design Processes:</b> MOS Layers, Stick Diagrams, Design Rules and Layout- Lambda( $\lambda$ )-based design rules, contacts and Transistors Layout Diagrams, 2µm micron-based design rules.	CO1,CO3, CO5&CO6

	Gate level Design: CMOS Logic gates and other complex gates, Some	CO1,CO3					
III	architectural issues, Switch Logic, Gate Logic, Time Delays, Driving large	CO5					
	Capacitive Loads, Wiring Capacitances, Choice of layers.						
IV	<b>VLSI Design styles:</b> VLSI Design Flow, Implementation approach in VLSI design -Full-custom, Semicustom, Gate-arrays, FPGAs and CPLDs architecture, Standard Cell.	CO1,CO3, CO5&CO6					
V	CMOS Testing: CMOS Testing, Need for Testing, Test Principles, Design	CO1,CO2					
v	Strategies for Test, Chip Level and Board Level Test Techniques.	CO4 & CO6					

- Text Books:

   1. Douglas A, Pucknell, Kamran Eshraghian "Essentials of VLSI circuits and systems", PHI,1st Edition ,2005
  - 2. Neil H. E Weste, David Harris, "CMOS VLSI Design A Circuits and Systems Perspective", Pearson ,3rd Edition, 2009.

## **Reference Books:**

- 1. John .P. Uyemura,"CMOS logic circuit Design" Springer, 2007.
- 2. Wayne Wolf "Modern VLSI Design System-on-Chip Design", Pearson Education, 3rd Edition, 1997.
- 3. K. Lal Kishore "VLSI Design", IK international publishing house., 2013

## **E-Resources:**

- 1. https://nptel.ac.in/courses/108/107/108107129/
- 2. http://swarm.cs.pub.ro/~mbarbulescu/SMPA/CMOS-VLSI-design.pdf

# **OPERATING SYSTEMS**

Course Code	20EE4701E	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Data structures, Computer Organization and Architecture
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Understand the structure and functionalities of operating systems (L2)						
CO2	Apply different algorithms of CPU scheduling, Page replacement and diskscheduling (L3)						
CO3	Apply various concepts to solve problems related to process synchronization and deadlocks. (L3)						
CO4	Analyze and interpret the functionalities of operating system. (L4)						

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3								2	2				
CO3	3								2	2				
CO4		2							2	2			1	

	SYLLABUS						
Unit	Contents	Mappe					
No.		d CO					
Ι	Overview: Introduction: What Operating Systems Do, Computer-						
	System Organization, Computer-System Architecture, Operating-						
	System Structure, Operating-System Operations						
	Operating System Structures:	CO2,					
	Operating-System Services, User and Operating-System Interface, System	005					
	Calls, Types of System Calls.						
II	Process Management: Process Concept, Process Scheduling,						
	Operations on Processes, Inter-process Communication.						
	Threads: Overview, Multi-core Programming, Multithreading Models.	CO1,					

	Process Scheduling: Basic Concepts, Scheduling Criteria, Scheduling	CO2,				
	Algorithms (First-Come, First-Served Scheduling, Shortest-Job-First	CO4				
	Scheduling, Priority Scheduling, Round-Robin Scheduling.)					
III	Process Synchronization: Background, The Critical-Section	CO1				
	Problem, Peterson's Solution, Synchronization Hardware, Mutex	CO1,				
	Locks, Semaphores, Classic Problems of Synchronization, Monitors.	005,				
	Deadlocks: System Model, Deadlock Characterization, Methods for	CO4				
	Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance,					
	Deadlock Detection, Recovery from Deadlock.					
Ι	Memory Management:					
V	Main Memory: Background, Swapping, Contiguous Memory Allocation,					
-	Segmentation, Paging, Structure of the Page Table	CO1,				
	Virtual Memory: Background, Demand Paging, Copy-on-Write, Page	CO2,				
	Replacement, Basic Page Replacement, FIFO Page Replacement, Optimal	CO4				
	Page Replacement, LRU Page Replacement, LRU-Approximation Page					
	Replacement, Allocation of Frames, Thrashing.					
V	Storage Management:					
	File-System Interface: File Concept, Access Methods, Directoryand					
	Disk Structure.					
	File-System Implementation: File-System Structure, File- System					
	Implementation, Directory Implementation, Allocation Methods.					
	Mass-Storage Structure: Overview of Mass-Storage Structure, Disk					
	Structure, Disk Attachment, Disk Scheduling, FCFS Scheduling, SSTF					
	Scheduling, SCAN Scheduling, C-SCAN Scheduling, LOOK					
	Scheduling, Selection of a Disk-Scheduling Algorithm.					

4. Abraham Silberchatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts, Wiley India, Ninth Edition, 2016,.

Reference Books

Text Books

- 1. William Stallings, Operating Systems Internal and Design Principles, Pearson, Ninth Edition, 2018.
- 2. Harvey M.Deitel, Paul J Deitel and David R.Choffnes, Operating Systems -, Pearson, Third Edition, 2019.
- 3. D.M. Dhamdhere, Operating Systems A Concept based Approach-, McGraw Hill, Second Edition, 2010,.

Web Links

- <u>https://onlinecourses.nptel.ac.in/noc19_cs50/</u>
 <u>http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC</u>51_4p ouojjtd4

REAL TI	ME CONTROI	L OF POWER	SYSTEMS
---------	------------	------------	---------

Course Code	20EE4702A	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	PSA
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to					
CO1	Understand the various concepts and applications in real time control of power					
	systems. (L2)					
CO2	Apply the knowledge of power systems in real time computer control. (L3)					
CO3	Develop voltage stability analysis and application of ANN, PMU techniques in real					
	time control of power systems. (L3)					
CO4	Analyze the various real time functions in power systems. (L4)					
CO5	Learn various real time functions of power system and submit a report.					

Contribution of Course Outcomes towards achievement of Program Outcomes &
Strength of correlations (3: High, 2: Medium, 1: Low)

			Sue	ngui e		eratio	ліз (Э.	. mgn	I, <i>2</i> . IVI	leulum,	I. LUW)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	2			1	1	1						1	3	2
CO3	3			2								2	3	2
CO4		3		1	1	1						2	3	2
CO5	3	3							3	3			3	2

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	State Estimation: Introduction, need of state estimation, block diagram of	CO 1
	state estimation, static state estimations - theory of Least Square Estimation	CO 2
	and Weighted Least Square Estimation methods for linear and nonlinear	CO 4
	measurements, applications of state estimation.	CO 6
II	Bad Data Processing: Bad data observability, pseudo measurements,	CO 1
	treatment of bad data, bad data detection using chi-square test, bad data	CO 2
	identification and suppression of bad data.	CO 4
		CO 6
III	Computer Control of Power Systems: Need for real time and computer	CO 1
	control of power systems, operating states of a power system, Energy	CO 2
	Control Centers, functions of ECC, hierarchical level of Energy Control	CO 4
	Centers.	231

		<u> </u>
	Supervisory control and Data Acquisition system - functions, functional	CO 6
	block diagram, software and hardware components, applications of	
	SCADA.	
IV	Voltage Stability: Concept of voltage stability, voltage instability, voltage	CO 1
	collapse and voltage security, factors affecting voltage stability, measures	CO 3
	to improve voltage stability, relation between voltage stability to rotor	
	angle stability, voltage stability analysis using 'P-V'curves and 'Q-V'	CO 4
	curves.	CO 6
V	Application of ANN in Power System: Basic concepts and definitions,	CO 1
	algorithms for state estimation, short term load forecasting.	CO 3
	Concept of PMU-Block diagram of PMU-Applications of PMU in power	CO 4
	systems.	CO 6

Text Books

0

- 1. Abhijit Chakrabarti, Sunita Halder, "Power System Analysis: Operation and Control", PHI publications, 2008.
- 2. Carson.W.Taylor, "Power systems voltage stability", McGraw-Hill, 1994.

Reference Books

- 1. John Grainger and William Stevenson, "Power System Analysis", Tata McGraw Hill, 2017.
- 2. Hadi Saadat, "Power System Analysis", McGraw Hill, 2004.
- 3. I.J.Nagrath and D.P.Kothari, "Modern Power System Analysis", Tata McGraw Hill Publishing Company Ltd, 4th edition, 2011.

Web Links

1. https://nptel.ac.in/courses/108106022

Course Code	20EE4702B	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basic Electrical and Electronics Engineering
Continuous Internal Evaluation:	30	Semester End Evaluatio n:	70	Total Marks:	100

ELECTRICAL VEHICLES

	Course Outcomes										
Upon su	Upon successful completion of the course, the student will be able to										
CO1	Define the concepts of electric vehicle, hybrid vehicle, fuel cell vehicle and energy										
	storage. (L1)										
CO2	Classify performance of electric vehicle, hybrid vehicle, fuel cell vehicle and energy										
	storage. (L4)										
CO3	Develop the basic schemes of electric vehicle, hybrid vehicle, fuel cell vehicle and										
	battery technology of Electric vehicles. (L3)										
CO4	Identify various drive system and technologies used in the vehicles. (L3)										
CO5	Submit a report in electric and hybrid vehicle, propulsion system, energy storage										
	systems, energy management for Electric vehicle applications.										

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	Strength of correlations (cringh, 2. Meaning 1.2007)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2		3				3	3					3	3	
CO3	3		3	3			3					3	3	
CO4	3					3						3	3	
CO5									3	3			3	

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
Ι	 Introduction to Electric Vehicles: History of Electric and Hybrid Vehicles, Environmental Impact. Vehicle Fundamentals: Vehicle resistance, Dynamic Equation, Vehicle Performance, Braking Performance. 	CO1, CO3, CO5
II	Configuration and Performance of Electric Vehicles: Configurations of Electric Vehicles, Performance of Electric Vehicles, Traction Motor Characteristics, Tractive Effort, Concept and Architectures of Hybrid Electric Drive Trains.	CO2, CO3, CO4, CO5

III	Hybrid Electric Vehicles: Concept of Hybrid Electric Drive Trains, Architectures of Hybrid Electric Drive Trains, Series Hybrid Electric Drive Trains, Parallel Hybrid Electric Drive Trains.	CO2, CO3, CO4, CO5
IV	Fuel Cell Vehicles: Operating Principles of Fuel Cells, Electrode Potential and Current–Voltage Curve, Fuel and Oxidant Consumption, Fuel Cell System Characteristics, Fuel Cell Technologies, Fuel Supply.	CO2, CO3, CO4, CO5
V	Energy Storage: Electrochemical Batteries: Electrochemical Reactions, Thermodynamic Voltage, Specific Energy, Specific Power, Energy Efficiency, Battery Technologies. Ultra capacitors: Features of Ultra capacitors, Basic Principles of Ultra capacitors, Performance of Ultra capacitors, Ultra capacitor Technologies, Ultrahigh-Speed Flywheels, Hybridization of Energy Storages.	CO1, CO2, CO3, CO4, CO5

 Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electrical and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
 Iqbal Hussein, *Electric and Hybrid Vehicles: Design Fundamentals*, CRC Press, 2003.

Reference Books

Text Books

1. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

e- Resources & other digital material

1. https://www.sciencedirect.com/topics/social-sciences/hybrid-electric-vehicle

Course Code	20EE4702C	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Signals and Systems & Control Systems
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

DIGITAL CONTROL SYSTEMS

	Course Outcomes										
Upon	Upon successful completion of the course, the student will be able to										
CO1	Understand the fundamentals of digital control systems, sampling theorem (L2)										
CO2	Apply the basic knowledge of Z-transforms and assess the state of the digital control systems (L3)										
CO3	Apply various stability tools to check the performance and design of state feedback control systems (L3)										
CO4	Analyze various state space modeling techniques in digital control systems (L4)										
CO5	Examine the stability of discrete-time control systems and state feedback controllers via pole placement in z-plane (L4)										
CO6	Ability to do various problems in Digital control systems and submit a report.										

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

			30	engin		i i eiai	10112 (5.mg	II, 2 . r	vieuiuiii, .	L'LOW)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3													2	1
	3		3	2									2	1
CO4		3											2	1
CO5		3		2									2	1
CO6									3	2		3	2	1

SYLLABUS										
Unit	Contents									
No.										
Ι	Discrete Representation of Continuous Systems: Basics of Digital Control Systems, Discrete representation of continuous systems, advantages and disadvantages, examples, Impulse sampling and data hold – transfer function of Zero order hold, sampling theorem	CO1, CO2 CO6								

IIThe Z-transform: Z transforms of some elementary functions, important theorems of the Z-transform, inverse Z-transform using partial fraction expansion method (simple poles and atleast one zero case), z-transform method for solving difference equations, the pulse transfer function.CO CO4 CO4IIIState space analysis: Concept of the state space method, State space equations-Homogeneous case (z-transform approach), Controllability, Observability (Kalman's Test), principle of dualityCO1 CO2 CO2 CO3IVStability analysis: Mapping between the s-plane and the z-plane-primary, complementary strips and constant attenuation lines mapping, Stability CO3 Stability analysis using bilinear transformation,CO1 CO3IVState Feedback Controllers & Observers: Design via pole placement, CO1CO1 CO3									
IItheorems of the Z-transform, inverse Z-transform using partial fractionCO2expansion method (simple poles and atleast one zero case), z-transformCO4method for solving difference equations, the pulse transfer function.CO4IIIState space analysis: Concept of the state space method, State spaceCO1equations-Homogeneous case (z-transform approach), Controllability, Observability (Kalman's Test), principle of dualityCO1IVStability analysis: Mapping between the s-plane and the z-plane-primary, complementary strips and constant attenuation lines mapping, Stability CO3CO1IVState Feedback Controllers & Observers: Design via pole placement, CO1CO1		The Z-transform: Z transforms of some elementary functions, important	CO1,						
IIexpansion method (simple poles and atleast one zero case), z-transform method for solving difference equations, the pulse transfer function.CO4 CO6State space analysis: Concept of the state space method, State space representations of discrete time systems, solving discrete time state space equations-Homogeneous case (z-transform approach), Controllability, Observability (Kalman's Test), principle of dualityCO1 CO2 CO2 CO2IIIStability analysis: Mapping between the s-plane and the z-plane-primary, complementary strips and constant attenuation lines mapping, Stability Stability analysis using bilinear transformation,CO1 CO2 CO3 CO3 CO3 CO3 CO3 CO3 CO4 CO3 CO3 CO3 CO3 CO3 CO4 CO3 CO3 CO4 CO3 CO3 CO3 CO3 CO4 CO3 CO4 CO3 CO3 CO3 CO4 CO4 CO3 CO3 CO4 CO3 CO4 CO4 CO3 CO4 CO4 CO3 CO4 CO4 CO3 CO4 CO4 CO3 CO4 CO4 CO4 CO4 CO3 CO4 <	Π	theorems of the Z-transform, inverse Z-transform using partial fraction							
method for solving difference equations, the pulse transfer function.COCState space analysis: Concept of the state space method, State space representations of discrete time systems, solving discrete time state space equations-Homogeneous case (z-transform approach), Controllability, Observability (Kalman's Test), principle of dualityCOI COZ <br< td=""><td>expansion method (simple poles and atleast one zero case), z-transform</td><td>CO4 &</td></br<>		expansion method (simple poles and atleast one zero case), z-transform	CO4 &						
State space analysis: Concept of the state space method, State space representations of discrete time systems, solving discrete time state space equations-Homogeneous case (z-transform approach), Controllability, Observability (Kalman's Test), principle of dualityCOL COZ (COZ) &COZ COZ &COZ COZ (COZ)		method for solving difference equations, the pulse transfer function.	CO6						
IIIrepresentations of discrete time systems, solving discrete time state space equations-Homogeneous case (z-transform approach), Controllability, Observability (Kalman's Test), principle of dualityCO2 CO2 &CO3 &CO3 <td></td> <td>State space analysis: Concept of the state space method, State space</td> <td>CO1</td>		State space analysis: Concept of the state space method, State space	CO1						
IIIequations-Homogeneouscase(z-transform approach),Controllability,CO2 &CC0Observability (Kalman's Test), principle of dualityStabilityanalysis:Mapping between the s-plane and the z-plane-primary, CO1 		representations of discrete time systems, solving discrete time state space							
Observability (Kalman's Test), principle of duality&CCStability analysis: Mapping between the s-plane and the z-plane-primary, complementary strips and constant attenuation lines mapping, Stability Analysis of closed loop systems in the Z-plane, the Jury stability test, Stability analysis using bilinear transformation,CO1 CO3 CO3 CO3 CO3 CO4 CO4 CO5 CO5 CO5 CO6State Feedback Controllers & Observers: Design via pole placement,CO1 CO3	III IV	equations-Homogeneous case (z-transform approach), Controllability,							
Stability analysis: Mapping between the s-plane and the z-plane-primary, complementary strips and constant attenuation lines mapping, Stability Analysis of closed loop systems in the Z-plane, the Jury stability test, Stability analysis using bilinear transformation,CO1 		Observability (Kalman's Test), principle of duality							
complementary strips and constant attenuation lines mapping, StabilityCO3IVAnalysis of closed loop systems in the Z-plane, the Jury stability test, Stability analysis using bilinear transformation,CO5State Feedback Controllers & Observers: Design via pole placement, CO1CO1		Stability analysis: Mapping between the s-plane and the z-plane-primary							
IVAnalysis of closed loop systems in the Z-plane, the Jury stability test, Stability analysis using bilinear transformation,CO5 CO6State Feedback Controllers & Observers: Design via pole placement, CO1CO1		complementary strips and constant attenuation lines mapping. Stability	CO3.						
Stability analysis using bilinear transformation,COEState Feedback Controllers & Observers: Design via pole placement,COI		Analysis of closed loop systems in the Z-plane, the Jury stability test,	CO5&						
State Feedback Controllers & Observers: Design via pole placement, CO1		Stability analysis using bilinear transformation,	CO6						
		State Feedback Controllers & Observers: Design via pole placement,	CO1,						
necessary and sufficient condition (Ackerman's formula), State observers – CO3	V	necessary and sufficient condition (Ackerman's formula), State observers -	CO3,						
v necessary and sufficient condition for state observation, full order state CO5		necessary and sufficient condition for state observation, full order state	CO5&						
observer (Ackerman's formula) COe		observer (Ackerman's formula)	CO6						

1. K.OGATA ,Discrete-time Control Systems, prentice hall international, 2nd edition, 2015.

2. B.C.KUO, Digital Control Systems, Oxford University Press, 2nd edition, 2007.

Reference Books

Text Books

1. M.Gopal ,Digital Control Engineering, New Age International, 2nd edition,2014.

2. V.L.GEORGE, C.P.KURIAN, Digital Control systems, Cengage Learning, 2nd edition,1998.

Web Links

1. https://nptel.ac.in/courses/108103008

EMBEDDED SYSTEMS

Course Code	20EE4702D	Year	IV	Semester	Ι	
Course Category	Professional Elective -IV	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	MP&MC	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Discuss the methodologies of embedded systems (L2)

CO2 Assess the basic knowledge on building blocks, development Tools for the application in embedded systems. (L3)

CO3 Examine the basics of real time operating system, processor scheduling algorithms, different phases and modeling of embedded system. (L3)

CO4 Identify the buses and software tools required to build embedded systems. (L4)

CO5 Determine the operating system, scheduling algorithms, different phases involved in developing the embedded system applications. (L4)

CO6 Ability to do various applications in embedded systems and submit a report.

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of
correlations (3:High, 2: Medium, 1:Low)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3		1										2	1
CO3	3					1		1					2	1
CO4		3		1	1		1					1	2	1
CO5		3					1						2	1
CO6									3	3	1			

Syllabus										
Unit No.	Contents									
Ι	Introduction to Embedded Systems: Embedded systems vs general computing systems, history of embedded systems, classification of embedded systems, major application of embedded systems, purpose of embedded systems, elements of an embedded systems, core of the embedded systems, memory.									
Π	Communication Buses in Embedded Systems: On board communication interfaces: I2C, SPI bus,1 Wire bus, parallel interface, External Communication interfaces:RS232, RS485, USB, IEEE 1394 firewire bus, Bluetooth, Wi-Fi, Zigbee, GPRS, GSM.	CO1 CO2 CO4 CO6								
		Embedded system Development Tools: Software Development environment-	CO1							
---	-----	---	-----							
	ш	IDE, Types of files generated on cross-compilation, Disssembler/Decompiler,	CO2							
	111	simulators, emulators, debugger, target hardware debugging, hardware-	CO4							
		software co-design	CO6							
		Introduction to Real-Time Operating Systems: A brief history of operating	CO1							
	W	systems, defining an RTOS, the scheduler, introduction to task, task states and	CO3							
	1 V	scheduling, round-robin scheduling algorithm, co-operative scheduling	CO5							
		algorithm, pre-emptive scheduling algorithm, Introduction to semaphores.	CO6							
		Embedded system application development: Objectives, different phases	CO1							
	• •	and modeling of the embedded product development life cycle (EDLC), case	CO3							
	V	studies on smart card, adaptive cruise control in a car, mobile phone software	CO5							
		for key inputs.	CO6							
1										

Text Books:

1. Shibu.K.V, "Introduction to Embedded Systems", Tata McGraw Hill, 2nd Edition, 2017

2. Rajkamal, 'Embedded System-Architecture, Programming, Design', TMH 3rd Edition, 2017. **Reference Books:**

- 1. Peckol, "Embedded system Design", JohnWiley&Sons,2nd Edition, 2019.
- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 1st Edition, 2013.

E-Resources:

- 1. https://nptel.ac.in/courses/106105159
- 2. https://nptel.ac.in/courses/108102045

DATABASE MANAGEMENT SYSTEMS

Course Code	20EE4702E	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Understand the basic concepts of database management systems (L2)							
CO2	Apply SQL commands to find solutions for a given application (L3)							
CO3	Apply ER Modeling to design a database application (L3)							
CO4	Apply normalization techniques to improve database design. (L3)							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Str	rength	of co	rrelat	ions (3:Hig	h, 2: N	Aedium , 1	1:Low))		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3								2	2			3	
CO3	3								2	2			3	
CO4		2							2	2			3	3

	SYLLABUS	
Unit	Contents	Mappe
No.		d CO
Ι	Introduction to Databases: Characteristics of the Database Approach,	
	Advantages of using the DBMS Approach, A Brief History of Database	
	Applications.	CO1
	Overview of Database Languages and Architectures: Data Models,	
	Schemas and Instances, Three-Schema Architecture and Data	
	Independence, Database Languages and Interfaces, Database System	
	environment, Centralized and Client-Server Architecture for	
	DBMS.	
II	Relational Model: The Relational Model Concepts, Relational Model	
	Constraints and Relational Database Schemas.	CO^{2}
	SQL: Data Definition, Constraints, Basic Queries and Updates,	002
	Views(Virtual Tables)in SQL	
III	Conceptual Data Modeling: High-Level Conceptual Data Models for	
	Database Design, A Sample Database Application, Entity Types, Entity	
	Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles,	CO3
	and Structural Constraints, Weak Entity Types.	005

	ER-Diagrams: Refining the ER Design, ER Diagrams, Naming	
	Conventions and Design Issues	
IV	Database Design Theory: Functional Dependencies, Normal forms	CO4
	based on Primary Keys, Second and Third Normal Forms, Boyce-Codd	
	Normal Form.	
V	Transaction Processing: Introduction, Transaction and System	
	Concepts, Desirable Properties of Transactions.	CO1
	Introduction to Protocols for Concurrency Control in Databases:	
	Two-Phase Locking Techniques for Concurrency Control - Types of	
	Locks and System Lock Tables.	

 Text Books

 1. Database Systems Models, Languages, Design and Application Programming, Ramez Elmasri, Shamkant B.Navathe, 6th Edition, Pearson.

References

- 1. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, 3rd Edition, TMH.
- 2. Data base System Concepts, Abraham Silberschatz, Henry F Korth, S.Sudarshan, 5th Edition, McGraw Hill.

e-Resources and other Digital Material

1. <u>https://nptel.ac.in/courses/106/105/106105175/</u>

- 2. https://onlinecourses.nptel.ac.in/noc21_cs04/
- 3. https://nptel.ac.in/courses/106/106/106106093/

SMART GRID TECHNOLOGIES

Course Code	20EE4703A	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	EPGT&D and PSA
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon suce	cessful completion of the course, the student will be able to							
CO1	Understand the concepts of smart grid technologies. (L2)							
CO2	Apply the smart grid techniques and smart metering infrastructure to meet the							
02	needs of utility(L3)							
CO3	Apply load flow and contingency methods for smart grid. (L3)							
CO4	Apply the concepts of computational tools for smart grid (L3)							
CO5	Examine the interoperability and cyber security of smart grid (L4)							
C06	Create a frame work for knowledgeable power engineers to operate the grid							
	more effectively and submit a report.							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

		N •1 •	88	01 001		0	8	, _, _,		 (
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3					3						3	3	3
3				1							1	3	3
2		2		1	2						1	3	3
	3		2				2				2	3	3
3				3				3	3		3	3	3
	PO1 3 3 2 3 3	PO1 PO2 3	PO1 PO2 PO3 3	PO1 PO2 PO3 PO4 3	PO1 PO2 PO3 PO4 PO5 3 - - - 3 - 1 2 2 1 3 2 3 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 1 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
Ι	Introduction to Smart Grid: Smart grid definition, benefits, comparison of traditional grid and smart grid, stakeholders in smart grid development, functions of smart grid components, computation intelligence, comparison between micro grid and	CO1 CO2 CO6
II	Communication and Measurement:	CO1
	Introduction, wide area monitoring system, comparison of conventional an smart metering, benefits of smart meters, functional block diagram of	d CO2 a CO6

-		
	smart meter architecture, advanced metering infrastructure, GIS technology	/,
	MAS technology.	
III	Performance Analysis Tools For Smart Grid Design:	
	Challenges to load flow in smart grid, load flow state, contingency studies	CO1
	for the smart grid, steady state contingency analysis, performance indices,	CO3
	sensitivity based approaches.	CO6
IV	Computational Tools for Smart Grid:	
	Introduction to computational tools, decision support tools, optimization	CO1
	techniques, heuristic optimization, evolutionary computational	CO4
	techniques, hybridizing optimization techniques and applications to the	CO6
	smart grid.	
V	Interoperability and Cyber Security:	
	Introduction to interoperability, benefits and challenges of	CO1
	interoperability, model for interoperability in the smart grid environment,	
	smart grid network interoperability, interoperability and control of the	CO3 CO6
	power grid, smart grid cyber security, cyber security risks, cyber security	
	concerns associated with AMI, mitigation approach to cyber security risks.	

Learning Resources
Text Books
1. James Mamoh, "Smart Grid – Fundamentals of design and analysis", John Wiley &
sons, incPublication First Edition 2012.
2. Janaka Ekanakye, "Smart Grid Technology and Application", John Wiley & sons, inc
Publication, First Edition 2012.
Reference Books
1. Jennie C.Stephens," Smart grid - Evolution", Cambridge University Press, First Edition
2015.
2. Andries P. Engelbrecht, "Computational Intelligence - An Introduction", John Wiley &
Sons, Ltd, First Edition 2002.
3. Devendra K. Chaturvedi, "Soft Computing- Techniques and its Applications in
Electrical Engineering", Springer 2008.
e-Resources

1. https://nptel.ac.in/courses/108107113

AI TECHNIQUES IN ELECTRICAL ENGINEERING

Course Code	20EE4703B	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Power System Analysis
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes							
Upon successful completion of the course, the student will be able to							
CO1	Understand the concepts of artificial intelligence techniques. (L2)						
CO2	Categorize feed forward and feedback neural networks (L4)						
CO3	Analyze and appreciate the concepts of fuzzy set over classical set theory. (L4)						
CO4	Examine the concept of genetic algorithm(L4)						
CO5	Apply ANN, fuzzy logic control and GA to electrical engineering problems (L3)						
CO6	Learn the computational and mathematical theory, and application of fundamental						
	AI algorithms for electrical engineering problems and submit the report.						

(Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	2	2	1	2	2						2	2	3	1
CO3	2	2	1	1	1						1	1	3	1
CO4		2	3	2	2						2	2	3	1
CO5	2	2	2	2	1	1	1	1			1	1	3	1
CO6		3	3						3	3		3	3	1

SYLLABUS						
Unit	Unit Contents					
No.		CO				
Ι	Artificial Neural Networks: Introduction, Biological Neuron and organization of the brain, Biological and Artificial Neuron Models, Characteristics of ANN, McCulloch-Pitts Model, Types of Neuron Activation Functions, ANN Architectures, Learning process – Error correction learning – Hebbian learning – Competitive learning – Boltzmann learning – Supervised learning – Unsupervised learning – Reinforcement learning.	CO1, CO2, CO5, CO6				
Π	ANN Paradigms: Perceptron - Limitations of the Perceptron Model, Back propagation	CO1, CO2, CO5,				

	Algorithm with example problem – Radial Basis Function Network - Hopfield Network.	CO6
III	Fuzzy Logic:	
	Introduction to classical sets - properties, Operations and relations,	CO1,
	Introduction to Fuzzy sets - Fuzzy versus crisp, Membership function,	соз,
	Basic Fuzzy set operations, Properties of Fuzzy sets, Fuzzy cartesian	СО5,
	Product, Defuzzification methods.	CO6
IV	Genetic Algorithms:	
	Introduction, Fitness Function, Reproduction operators, Genetic operators	CO1
	- Crossover - Single-site crossover - Two-point crossover - Multi point	СО4,
	crossover-Uniform crossover - Matrix crossover - Crossover Rate -	CO5,
	Inversion & Deletion, Mutation operator –Mutation – Mutation Rate,	CO6
	Generational cycle, convergence of Genetic Algorithm.	
V	Applications of AI Techniques:	CO1
	Load flow studies, Economic load dispatch, Load frequency control -	CO1,
	Single area system and two area system, Small Signal Stability, speed	CO3, CO6
	control of DC and AC Motors.	200

1.	Rajasekharan and Pai, Neural Networks, Fuzzy logic, Genetic Algorithm - Synthesis and
	Applications, PHI second edition, 2017

2. S. N. Sivanandam, S. Sumathi, S. N. Deepa, "Soft computing techniques", Wiley Publications third edition 2018

Reference Books

Text Books

- 1. Jacek M Zurada, Introduction to Artificial Neural Systems Jaico Publishing House, First edition, 1994.
- 2. K. Deb, Optimization for Engineering Design Algorithms and Examples, Prentice Hall of India, New Delhi, second edition, 2012.
- 3. F. Karray and C. De Silva, "Soft Computing and Intelligent Systems Design, Theory, Tools and Applications", Prentice Hall, first edition 2009.

e-Resources

1. https://nptel.ac.in/courses/106105173

HVDC AND FACTS

Course Code	20EE4703C	Year	IV	Semester(s)	Ι
Course Category	Professional Elective -V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisite s	EPGT&D and PE
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon su	Upon successful completion of the course, the student will be able to							
CO1	Understand the importance of FACTS controllers and HVDC in transmission system. (L2)							
CO2	Interpret the concept of AC and DC transmission systems. (L3)							
CO3	Identify the objectives of series and shunt compensation of power systems (L3)							
CO4	Analyse the performance of various compensations by using FACTS controllers. (L4)							
CO5	Analyze converter configurations used in HVDC transmission and evaluate the performance metrics. (L4)							
CO6	Ability to understand the concepts of FACTS controllers, HVDC transmission and submit a report.							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	2						1	1					2	2
CO3	3					1						2	2	2
CO4		2									2		2	2
CO5		3										1	2	2
CO6	3	3							3	3			2	2

	SYLLABUS						
Unit	Contents	Mapped					
No.		СО					
Ι	FACTS Fundamentals: Introduction to FACTS, Flow of Power in an AC System, Limitations on Loading Capability, Power Flow and Dynamic Stability Considerations of a Transmission Interconnection, Relative Importance of Controllable Parameters, Basic Types of FACTS Controllers, Basic Definitions of FACTS Controllers, Checklist of Possible Benefits from FACTS Technology.	CO1 CO2 CO6					
II	Shunt Compensation: Objectives of shunt compensation, methods of controllable VAR generation –Thyristor controlled Reactor (TCR), Thyristor Switched	CO1 CO3 CO4					

	Capacitor (TSC). Switching Converter Type Var Generators, Basic	CO6
	Operating Principles.	
	Series Compensation: Objectives of series compensation, Concept of	CO1
	Series Capacitive Compensation, Basic operation of Thyristor	CO3
	Switched Series Capacitors (TCSC), Basic operating principle of Static	CO4
	synchronous Series Compensator (SSSC).	CO6
III	Combined Compensators:	
	Unified power flow controller (UPFC) – Introduction, operating	
	principle.	
	Interline power flow controller (IPFC) – Introduction, operating	
	principle	
	HVDC Transmission: Introduction, Advantages of HVDC Systems	CO1
IV/	over AC systems. Types of DC links, Layout of HVDC Converter	CO2
1 V	station and various equipments.	CO5
		CO6
	HVDC Converter Operation: Choice of converter configurations,	CO1
V	Analysis of Graetz converter with (u<60) and without overlap,	CO5
v	Equivalent circuit representation of rectifier and inverter	CO6
	configurations, Basic operating principle of 12-pulseconverter.	

Text Books

- 1. Hingorani ,L.Gyugyi, 'Concepts and Technology of Flexible AC Transmission System', IEEE Press New York,1st Edition, 2000.
- 2. Padiyar, K.R., 'HVDC transmission systems', Wiley Eastern Ltd., 2nd Edition, 2010.

Reference Books

- 1. Jos Arrillaga, 'High voltage Direct Current Transmission' IET Power and Energy Series 29,2nd Edition,1998
- 2. Padiyar K.R., 'FACTS controllers for Transmission and Distribution systems' New Age International Publishers, 1st Edition, 2007.
- 3. Song, Y.H. and Allan T. Johns, 'Flexible AC Transmission Systems (FACTS)', Institution of Electrical Engineers Press, London,1st Edition, 1999.
- 4. Enrique Acha, Claudio R.Fuerte-Esqivel, Hugo Ambriz-Perez, Cesar Angeles-Camacho 'FACTS –Modeling and simulation in Power Networks' John Wiley & Sons, 1st Edition, 2002.

e-resources:

- 1. <u>https://nptel.ac.in/courses/108107114</u>
- 2. https://nptel.ac.in/courses/108104013

SWITCHED MODE POWER CONVERSION

Course Code	20EE4703D	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Power Electronics
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes									
Upon	Upon successful completion of the course, the student will be able to									
CO1	Understand Switch Mode Power Conversion and classify the DC to DC Converters. (L2)									
CO2	Differentiate the various Power semiconductor switches. (L3)									
CO3	Illustrate Isolated Power Conversion (L3)									
CO4	Analyze the performance of the Magnetic Components (L4)									
CO5	Analyze the switching regulator control, soft-switched dc-dc power converters (L4)									
CO6	Ability to design the various Switch mode power Converter and submit a report.									

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	Strength of correlations (3.111gli, 2. Mcululi, 1.10w)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													1	2
CO2	3										3		1	2
CO3	3			3									1	2
CO4		2	2				3						1	2
CO5		2	2	3							3		1	2
CO6									3	3			1	2

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Introduction To Switch Mode Power Converters	CO2,
	About Switch Mode Power Conversion, SMPS requirements. Cuk	CO3
	converters - and their principles of operation; continuous and	CO6
	discontinuous modes of operation.	
II	Thyristor Commutation Techniques	CO2,
	Review of Recent developments in power devices for switch mode power	CO3
	supplies. Selection of devices, Commutation: Load Commutation,	CO6
	Resonant Pulse Commutation, Complementary Commutation, Impulse	
	Commutation, External Pulse Commutation.	
III	Transformer-Isolated Converters	
	Single-switch and multi-switch transformer-isolated DC-DC converters.	CO3,
	Flyback and forward converters; transformer isolated half-bridge, full-	CO4

	bridge converters. Push-pull converters. Voltage fed and current-fed	CO6
	converters.	
IV	Magnetic Component Design	СОЗ,
	Magnetic core materials and performance; basic inductor and transformer	CO4,
	design; practical magnetic design; design aspects to be considered for	CO6
	designing transformers for specific applications – flyback, push-pull	
	converters.	
V	Switching Regulator Control, Soft-Switched Dc-Dc Power Converters	CO3
	Small-signal models for switching regulators. Performance analysis and	CO5,
	design of closed-loop system under different control methods, and	CO6
	operating modes. Measurement of small signal transfer functions. Soft-	
	Switched DC-DC Power Converters -Motivation. Hard-switching vs	
	soft-switching.	

T	ext	Books	

- 1. N Mohan, T M Undeland and W P Robbins, "Power Electronics: Converters, Applications and Design", Wiley, 3rd Edition, 2007
- 2. Abraham Pressman, Keith Billings, Taylor Morey, "Switching Power Supply Design", McGraw-Hill.3rd Edition, 2009

Reference Books

1. K. Kit Sum, Switch Mode Power Conversion: Basic Theory and Design 1st Edition, Kindle Edition, 2017

Web Links

1. https://nptel.ac.in/courses/108108036

MACHINE LEARNING

Course						
Code	20EE4703E	Year	IV	Semester(s)	Ι	
Course	Professional			Course		
Category	Elective-V	Branch	EEE	Туре	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites		
Continuous	30	Semester	70		100	
Internal	50	End	70	Total Marks:	100	
Evaluation:		Evaluation:				

	Course Outcomes										
Upon successful completion of the course, the student will be able to											
CO1	Understand the basic concepts of machine learning. (L2)										
CO2	Apply learning techniques on appropriate problems. (L3)										
CO3	Apply Evaluation, hypothesis tests and compare learning techniques for various problems. (L3)										
CO4	Apply Reinforcement learning to address the real time problems in different areas. (L3)										

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														
CO1	3														
CO2	3					2	2								
CO3	3								1	1			1	1	
CO4	3					1	1							2	

SYLLABUS							
Unit	Contents	Mapped					
No.		СО					
Ι	Introduction : What is Machine learning, Designing a Learning System, Perspectives and Issues in Machine Learning, Applications of Machine	CO1					
	learning.						
II	Supervised Learning : Decision Trees, Bayes Theorem, Naive Bayes Classifier, Measuring Classifier Accuracy, Estimating Hypothesis Accuracy.	CO1, CO2, CO3					
III	Instance Based Learning – Support vector machine, Ensemble Methods, k-Nearest Neighbor Learning, Expectation Maximization Algorithm, Case Based Reasoning.	CO1, CO2, CO3					
I V	 Un Supervised Learning: Partition methods of Clustering, Hierarchical methods, Density based clustering, Scalable Clustering Algorithms, Cluster Evaluation measures. Association analysis: Apriori algorithm, efficiently finding frequent item 	CO1, CO2, CO3					

	sets with	FP-growth.							
V	Reinforcement learning : The learning Task, Elements of Reinforcement								
	learning,	Q-Learning,	Model	based	Learning,	Temporal	Difference	CO1,	
	learning.							CO4	

Text Books

- 1. Ethem Alpaydin, Introduction to Machine Learning, Prentice Hall of India, Second Edition, 2010.
- 2. Anuradha Srinivasaraghavan, and Vincy Joseph, Machine Learning, WILEY, Kindle Edition, 2020.

Reference Books

- 1. Tom M. Mitchell, Machine Learning McGraw Hill Education, International Edition 1997,.
- 2. ", Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning, MIT Press, 2016.
 3. Kevin P Murphy & Francis Bach, Machine Learning a Probabilistic Perspective, MIT Press, First Edition, 2012.
- 4. Tan, Vipin Kumar, Michael Steinbach, Introduction to Data Mining, Pearson, Nineth Edition, 2013.

e-Resources and other Digital Material

1. https://www.coursera.org/learn/machine-learning

2. https://nptel.ac.in/courses/106/106/106106139/

MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTANCY											
Course Code	20HS7701A	Year	IV	Semester	Ι						
Course Category	Humanities and Social Science ElectiveBranchCommon to allC		Course Type	Theory							
Credits	3	L-T-P	3-0-0	Prerequisites	Nil						
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100						

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
CO1	Understand basics of managerial economics, demand forecasting, cost analysis, industrial organization, financial accounting and capital and capital budgeting.	Understand	L2	1,2,3,4,5
CO2	Apply the managerial economics, e-commerce, demand forecasting and cost analysis techniques in economics related problems.	Apply	L3	1,2
CO3	Summarize different types of industrial organization	Apply	L3	3
CO4	Analyze the financial accounting and depreciation related problems.	Analyze	L4	4,5

Contribution of Course outcomes towards achievement of Program outcomes & Strength of correlations (High:3, Medium: 2, Low:1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3					2		2			3		3	
CO2	3					2		2			3		3	
CO3	3					2		2			3		3	
CO4	3					2		2			3		3	

	Syllabus	
UNIT	Contents	Mapped CO
I	 INTRODUCTION TO MANAGERIAL ECONOMICS: Introduction, characteristics, scope & definition of Managerial Economics, its relation with other subjects, Basic economic tools in Managerial Economics. Demand Analysis: Meaning- Demand distinctions- Demand determinants- Law of Demand and its exceptions. ELASTICITY OF DEMAND & DEMAND FORECASTING: Definition -Types of Elasticity of demand - Measurement of price elasticity of demand and it's significance: Total outlay method, Point method and Arc method. Demand Forecasting: Meaning - Factors governing demand forecasting - Methods of demand forecasting. 	CO1 CO2
п	THEORY OF PRODUCTION AND COST ANALYSIS- INTRODUCTION TO MARKETS-PRICING POLICIES & E- COMMERCE: Production Function- Isoquants and Isocosts, Law of variable proportions- Law of returns to scale- Least Cost Combination	CO1 CO2

	of Inputs, Cobb-Douglas Production function-Economies of Scale	
	COST ANALYSIS: Cost concepts, Determination of Break Even	
	Point (BEP) with simple problems, Managerial Significance and	
	limitations of BEP. Market structures: Types of competition, Features	
	of Perfect Competition. Monopoly and Monopolistic Competition.	
	Pricing strategies.	
	TYPES OF INDUSTRIAL ORGANIZATION & INTRODUCTION	
ш	TO BUSINESS CYCLES : Characteristic features of Industrial organization, Features and evaluation of Sole Proprietorship, Partnership, Joint Stock Company, State/Public Enterprises and their types. Changing business environment in post-liberalization scenario.	CO1 CO3
IV	FINANCIAL MANAGEMENT AND INTRODUCTION TO FINANCIAL ACCOUNTING : Functions of financial management, simple and compound interest, Methods of evaluating alternatives- Present Worth method. Future worth Method, Annual equivalent method. Introduction to Double-entry system	CO1 CO4
V	 DEPRECIATION: Introduction, common methods of depreciation: straight line method, Declining balance method, sum of year's digits method. CAPITAL AND CAPITAL BUDGETING: Meaning of capital budgeting, Need for capital budgeting – Capital budgeting decisions (Examples of capital budgeting) - Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR), IRR and Net Present Value Method (simple problems). 	CO1 CO4

Text Books:

- 1. Engineering economics, R. Panneerselvam, 2nd Edition, PHI Learning Pvt. Ltd., 2013 .
- 2. Managerial Economics and Financial Analysis, by J.V.Prabhakar Rao, Maruthi Publications, 2011.

Reference Books:

- 1. Managerial Economics and Financial Analysis, by A R Aryasri, TMH 2011.
- 2. Financial Accounting, SN Maheswari, SK Maheswari, Vikas Publishing House Pvt Ltd., NewDelhi, 4th Edition, 2006.
- 3. Managerial Economics by Suma damodaran, Oxford 2011.
- 4. Mangerial Economice and Financial Analysis by S.A. Siddiqui & A.S. Siddiqui, New Age International Publishers, 2011.
- 5. Engineering economy- Theusen & Theusen, 8th edition,1993,Prentice Hall.

E-Resources & other digital Material:

- 1. www.tectime.com
- 2. www.exinfm.com
- 3. www.economywatch.com

Course Code	20HS7701B	Year	IV	Semester	Ι								
Course Category	Humanities and Social Science Electives	Branch	Common to all	Course Type	Theory								
Credits	3	L-T-P	3-0-0	Prerequisites									
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100								

HUMAN RESOURCE MANAGEMENT

	Course Outcomes			Unit
Upon	successful completion of the course, the student will be able	Skill	Level	No
to				110
C01	Understand the basic concepts, techniques and applications	Understand	12	1,2,3,
COI	of Human Resource Management.	Onderstand	112	4,5
CO2	Describe job design, job Analysis, job evaluation and	Understand	12	23
02	different levels of recruitment	Understand	L2	2,5
CO3	Illustrate different Training and development of human	Apply	12	4
003	resources	Арргу	LS	4
COA	Summarize e-Human Resource Management and Human	Apply	12	5
04	resource for small scale industries	Арріу	LS	3

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High(3), M: Medium(2), L:Low(1))													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		2			3					3	1	1	3
CO2	1		2			3					3	1	1	3
CO3	1		2			3					3	1	1	3
CO4	1		2			3					3	1	1	3

Syllabus									
UNIT	Content	Mapped CO							
I	Introduction: Functions, Policies & Roles, Skills for HR Professionals, HRM Models, Evolution of HRM, Recent developments in HRM, Nature of Strategic HRM, Strategic HRM versus Conventional HRM, Strategic Management Process, Benefits of SHRM, Barriers to Strategic HRM, Typical HR Strategies, Selecting Strategies to Enhance Performance. Human Resource Planning: Nature of HRP, Importance of HRP, Factors Affecting HRP, The Planning Process, Human Resource Planning and the Government Requisites for Successful HRP, Barriers to HRP	CO1							
п	 Analysis of Work, Designing Jobs and Job Evaluation: Nature of Job analysis, Job Analysis and Competitive Advantage, The Process of Job Analysis, Methods of Collecting Job Data, Job Analysis and Strategic HRM, Potential Problems with Job Analysis. Requisites for Job Analysis, Competency-based Job Analysis, Job 	CO1, CO2							

		P					
	Design, Significance of Jobs Design, Factors Affecting Job Design,						
	Job Design Approaches, Contemporary Issues in Job Design, Job						
	Evaluation, Job Evaluation Process, Methods of Job Evaluation,						
	Alternative to Job Evaluation.						
	Recruiting Talent: Nature of Recruitment, Purposes and Importance,						
	Factors Governing Recruitment, Recruitment Process, Evaluation and						
	Control, Philosophies of Recruiting, Alternatives to Recruitment.	CO1					
III	Selecting Right Talent: Nature of Selection, Selection as a Source of	CO1, CO2					
	Competitive Advantage, Organization for Selection, Selection Process,	ess, CO2					
	Assessment Centers, Barriers to Effective Selection, Evaluation of						
	Selection Process, Making Selection Effective.						
	Training and Development, Career Management and Talent						
	Management: Orientation, Orientation Programme, Requisites of an						
	Effective Programme, Evaluation of Orientation Programme,						
	Problems of Orientation, Typical Orientation Programme,						
IV	Nature of Training and Development, Inputs in Training and	CO1,					
	Development, Training and Development as Source of Competitive	000					
	Advantage, The Training Process, Impediments to Effective Training.						
	Government Initiative, Management Development, Career						
	Development, Talent Management.						
	e-Human Resource Management: Nature of e-HRM, e-HR						
	Activities, e-Recruitment, e-Selection, e-Performance Management, e-						
	Learning, e-Compensation						
V	Human Resource Management in Small Scale Units: Introduction						
•	to Small Business Unit, Significance of MSM Enterprises, Facilities						
	Problems, People Practices in Small Units, Challenges in Introducing						
	HR Practices, Current Practices, Guidelines for Application of HR						
	Practices.						

Text books:

1. Human Resource Management, Text & Cases by K. Aswathappa

Reference books

- 1. Human Resource Management, by S. Khandkar, S. Chand Publications
- 2. Personnel Management Text & Cases, By C. B. Mamoria& V. S. P. Rao, Himalaya
- 3. Human Resource Management by Gary Dessler, Pearson Education

Course Code	20HS7701C	Year	IV	Semester	Ι							
Course Category	Humanities and Social Science Electives	Branch	Common to all	Course Type	Theory							
Credits	3	L-T-P	3-0-0	Prerequisites	Nil							
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100							

ENTREPRENEURSHIP MANAGEMENT

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
CO1	Understand the basic concepts and factors for starting and successful running of different forms of an enterprise.	Understand	L2	1,2,3,4,5
CO2	Describe characteristics, values and attitudes of an entrepreneur.	Understand	L2	2
CO3	Illustrate different forms of Entrepreneurial structures and Intrapreneurship.	Application	L3	3,4
CO4	Summarize critical Factors for starting a new enterprise and ethics to be followed during running of enterprise.	Application	L3	5

	Contribution of Course outcomes towards achievement of Program outcomes & Strength of correlations (High:3, Medium: 2, Low:1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		2			3			3		3	2		
CO2	1		2			3			3		3	2		
CO3	1		2			3			3		3	2		
CO4	1		2			3		3	3		3	2		

Syllabus									
UNIT	Content	Mapped							
		CO							
I	Introduction to Entrepreneurship : Meaning, Nature, origin and development of entrepreneurship in India, Need and Importance, Core elements, Principles, Essentials, Types, Functions, Concept of entrepreneurship management, Motives behind being an entrepreneur, Entrepreneurial Process.	CO1							
II	 Entrepreneurial Values and Attitudes: Introduction to entrepreneurial Values and Attitudes, Dominant characteristics of successful entrepreneurs, Internal and external factors for entrepreneurial motivation, Entrepreneurial Skills, Identifying business opportunities. Role of creativity in Entrepreneurship- the creative process, the Innovation process, types of innovation, sources of innovation, principles of innovation, Sources of Business Ideas. 	CO1, CO2							

ш	Forms of Entrepreneurial structures: Sole Proprietorship-meaning, merits and limitations, Partnership-Meaning, Forms, merits and limitations. Corporations-Meaning, merits and limitations, Limited Liability partnerships and corporations, Franchising-Meaning, types, merits and limitations.	CO1, CO3
IV	Intrapreneurship : Meaning, Characteristics, Intrapreneurs Activities, types of Corporate Entrepreneurs, Corporate V/s Intrapreneurial culture, Climate, Fostering Intrapreneurial culture. Promoting intrapreneurship - Pinchot's Spontaneous teams and Formal Venture teams, establishing intrapreneurial ventures.	CO1, CO3
V	Critical Factors for starting a new enterprise : Personal, Environmental, Sociological factors, Problems of a new venture- Financial, administrative, marketing, production and other problems Ethics and Entrepreneurship : Defining Ethics, Approaches to Managerial ethics, ethics and business decisions, Ethical practices and code of conduct, Ethical considerations in corporate entrepreneurship.	CO1, CO4

Text Books

1. Entrepreneurship development, Moharanas and Dash C.R., RBSA Publishing, Jaipure.

2. Beyond entrepreneurship, Collins and Lazier W, Prentice Hall, New Jersey, 1992.

- 3. Entrepreneurship, Hisrich Peters Sphephard, Tata McGraw Hill.
- 4. Fundamentals of entrepreneurship, S.K. Mohanty, Prentice Hall of India.

Reference Books

- 1. Small scale industries and entrepreneurship, Dr. Vasant Desai, Himalayan Publishing House.
- 2. Management of small scale industries, Dr. Vasant Desai, Himalayan Publishing House.
- 3. Management of small scale industries, J.C. Saboo Megha Biyani, Himalayan Publishing House.
- 4. A Guide to Entrepreneurship, David Oates, Jaico Publishing House, Mumbai, Edn 2009.

E-Resources & other digital Material

- 1. <u>https://onlinecourses.swayam2.ac.in/cec20_mg19/preview</u>
- 2. <u>https://onlinecourses.swayam2.ac.in/ntr22_ed08/preview</u>

Course Code	20HS7701D	Year	IV	Semester	Ι					
Course Category	Humanities and Social Science Electives	Branch	Common to all	Course Type	Theory					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil					
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100					

ORGANIZATIONAL BEHAVIOUR

	Statement
CO1	Demonstrate the applicability of the concept of organizational behaviour to understand the behaviour and culture of people in the organization
CO2	Demonstrate the applicability of analysing the complexities associated with management of individual behaviour in the organization.
CO3	Analyse the complexities associated with Personality Development in the organization and role of leadership.
CO4	Demonstrate how the organizational behaviour can integrate inunderstanding the motivation between the formation of teams and stages of group development.
CO5	Demonstrate how the organizational behaviour can influence in understanding the development and culture of the individuals in the organization.

Contribution of Course outcomes towards achievement of Program outcomes & Strength of correlations (High:3, Medium: 2, Low:1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	3	3	-	2	-	-	-
CO2	-	-	-	-	-	-	-	3	3	-	2	-	-	-
CO3	-	-	-	-	-	-	-	3	3	-	2	-	-	-
CO4	-	-	-	-	-	-	-	3	3	-	2	-	-	-
CO5	-	-	-	-	-	-	-	3	3	-	2	-	-	-

Syllabus						
UNIT	Content	Mapped				
		CO				
I	Introduction to Organizational Behaviour: Definition of Organizational Behaviour-Nature and Scope of Organizational Behaviour-Opportunities of Organizational Behaviour-Linkage of Organizational Behaviour with	CO1				
	other disciplines-Organizational Behaviour Models					
Ш	Foundations of Individual Behaviour: Perception: Definition of Perception- Factors of Perception- The Perception Process- Motivation: Definition of Motivation-Theories of Motivation: Maslow's Hierarchy Theory of Needs- Herzberg's Two-Factor Theory-Mc Gregor's Theory of Motivation- Learning: Definition Learning- Objectives of Learning- Process of Learning- Theories of Learning-Classical conditioning theory- Operant conditioning theory.	C02				

III	Personality Development and Leadership: Personality Development - Definition of Personality-Objectives of Personality-Dimensions of Personality- Stages of Personality Development- Leadership - Definition of Leadership –	CO3
	Objectives of Leadership – Styles of Leadership in Organization	
IV	Formation of Teams and Group Dynamics: Formation of Teams - Definition of Team- Objectives of Teams - Types of Teams- Team Building- Creating Effective teams- Group Dynamics: Definition of Group- Formal Vs Informal Groups- Stages of Group Development-Johari Window- Transactional Analysis- Conflict -Definition, Conflict Resolution Mechanisms in Groups	CO4
V	Organizational Change and Culture: Organizational Change -Definition- Change Models- Organizational resistance to change Management of Change Process- Organizational Culture- Definition- Objectives-Distinction between	CO5

	Learning Resources
Text Book	 Fred Luthans, Organizational Behaviour, McGraw Hill, 11th Edition, 2001. Stephen P. Robins, Organisational Behaviour, PHI Learning / PearsonEducation, 11th adition, 2008.
S	
Referenc eBooks	 Hellrigal, Slocum and Woodman, Organizational Behaviour, Cengage Learning, 11th Edition 2007. Aswathappa K., "Organizational Behaviour-Text, Cases and Games", Himalaya Publishing House, New Delhi, 2008. Schermerhorn, Hunt and Osborn, Organizational Behaviour, John Wiley,9th Edition, 2008. Udai Pareek, Understanding Organizational Behaviour, 2nd Edition, Oxford Higher Education, 2004. Ivancevich, Konopaske &Maheson, Organizational Behaviour & Management,7th edition, Tata McGraw Hill, 2008. Hitt, Michael .A., Organizational Behaviour- A Strategic Approach, Wiley,

CONSTRUCTION MANAGEMENT											
Course Code	20HS7701E	Year	IV	Semester	Ι						
Course Category	Humanities and Social Science Electives	Branch	Common to all	Course Type	Theory						
Credits	3	L-T-P	3-0-0	Prerequisites	Construction materials and Concrete Technology						
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100						

NETDUCTION MANACEMENT

	Statement						
CO1	Knowledge on different methods of controlling and Work break down structure						
CO2	A complete idea on developing time estimates and problems on networkanalysis.						
CO3	Understanding of cost analysis and resource allocation and scheduling						
CO4	An idea on construction management, safety and roles of different stake holders						
CO5	Knowledge on types of organization and related policies and acts						

Contribution of Course outcomes towards achievement of Program outcomes & Strength of correlations (High:3, Medium: 2, Low:1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2			2		3	2		2	1	1	2
CO2		2	2			2		3	2		2	1	2	1
CO3		2	2			2		3	2		2	1	2	1
CO4		2	2			2		1	1		1	1	2	2
CO5		2	2			2		1	2		2	1	2	2

Syllabus					
UNIT	Content	Mapped CO			
I	Introduction to Construction Management : Introduction : Origin of PERT and CPM, Planning, Scheduling and controlling, Bar Charts, Milestone charts, weaknesses in Bar charts, PERT and CPM networks and Problems, Comparison, Event, Activity, Rules for drawing networks Numbering the events (Fulkerson's law), Dummy activities, Work Breakdown structure.	CO1			
п	CPM-PERT-Network Analysis: Time estimate-Expected time, Earliest allowable occurrence time, Latest allowable occurrence time, slack and Problems, Problems on Network Analysis, project duration, probability of completion, Start and Finish time estimates, Floats and Problems, Project scheduling, Critical and sub-critical path. Updating – Process of updating; when to update	CO2			

ш	CPM Cost Model & Resources allocations, resource scheduling: Cost Analysis; direct and indirect costs, operation time, Normal and crash times and costs, Problems on cost analysis, Optimizing project cost, crash limit, Free floatlimit, Optimization Resource smoothening. Resource levelling.	CO3
IV	Management: Scope of Construction Management; Significance of Construction Management, Concept of Scientific Management; Safety in Construction, Qualities of Manager; The roles/functions performed by effective and competent Managers, The Manager: i) as a decision maker; ii) as a motivator; iii) as a communication-link; iv) as a conflict resolver; v) as a well – wisher of co-employees and the employer; etc Role playwith roles of different stakeholders of construction industry.	CO4
v	Organization – Types of organization; Merits and demerits of different types of organization – Authority –Policy– Labour Problems; Labour Legislation in India; 'Workmen's compensation Act of 1923 and Minimum Wages Act of 1948', and subsequent amendments.	CO5

	Learning Resources
The state of the s	1. Dr. B. C. Punmia and K. K. Khandelwal, Project Planning and Control
Text Pook	with PERT and CPM, 4/e, Laxmi Publications, 2016
S	2. Kumar Neeraj Jha, Construction Project Management: Theory and
5	Practices, 2/e, Pearson Education, 2015
	1. Dr. P. N. Modi, Rajeev Modi, PERT and CPM - Project Evaluation Review
	Technique and Critical Path Method, 5/e, Standard Book House, 2012.
	2. L S Srinath, PERT and CPM Principles and Applications, 3/e, Affiliated
	East-West Press, 2001.
	3. U.K. Shrivastava, Construction Planning and Management, 2/e, Galgotia
Referenc	Publications- New Delhi, 2000.
e	4. Kerzner H., Project Management- A systems approach to planning,
Books	scheduling and controlling, 10/e, John Wiley & Sons, Inc., New Jersey, USA,
	2009.
e-	
Resou	1. <u>https://nptel.ac.in/courses/105104161/</u>
rces&	2. <u>http://jntuk-coeerd.in/</u>
other	
digital	
material	

	INDUSTRIAL ENG	INEERING & N	IANAGEN	IENT	
Course Code	20HS7701F	Year	IV	Semester	Ι
Course Category	Humanities and Social Science Elective	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation	70	Total Marks	100

ICTDIAL ENCINEEDING & MANACEMENT

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
	Understand the basic concepts of management,	Understand	L2	1,2,3,4,5
CO1	organizational structures, leadership, operations			
	management and project management.			
CO2	Explain the leadership qualities and concept of plant layout.	Understand	L2	2
CO3	Apply different quality control techniques.	Apply	L3	3
CO4	Illustrate various operations management Techniques	Apply	L3	4
C05	Solve operations management and project management	Apply	L3	5
005	problems			

		Contri	ibution	of Co	urse ou	itcome	s towa	rds ach	nievem	ent of P	rogram	outcom	es	
			&	Streng	gth of c	correla	tions (1	High:3	, Medi	um: 2, I	Low:1)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1					3		2			3		2	3
CO2	1					3		2			3		2	3
CO3	1					3		2			3		2	3
CO4	1					3		2			3		2	3
CO5	1					3		2			3		2	3

	Syllabus	
UNIT	Contents	Mapped
		CO
I	 INTRODUCTION: Definition of Industrial Engineering, Applications, Role of Industrial Engineer, Quantitative tools of IE, Functions of Management, Taylor's Scientific Management, Fayol's Principles of Management, Douglas Mc-Gregor's Theory X and Theory Y, Hertzberg's Two Factor Theory of Motivation, Maslow's Hierarchy of Human Needs. ORGANISATIONAL STRUCTURES: Basic concepts related to Organization – Depart mentation and Decentralization, Flat and Tall organizations, Organizational chart, Line organization, Line and staff organization, functional organization 	CO1
Ш	 LEADERSHIP: Introduction, Definition, Types of leadership based on authority- their area of applicability and suitability, advantages and limitations, Traits approach to leadership PLANT LOCATION: Definition, factors affecting the plant location, 	CO1, CO2

	comparison of rural and urban sites. Plant Layout – definition, objectives, types of production, types of plant layout – various data analyzing forms-travel chart.	
III	 INSPECTION AND QUALITY CONTROL: Types of inspections, Statistical Quality Control techniques, variables and attributes, assignable and non-assignable causes. Control Charts: variable control charts- X -bar and R charts, Attribute control charts- P-charts and C-charts. Acceptance sampling- Single Sampling, Double sampling, Multiple Sampling, OC curves. 	CO1, CO3
IV	 WORK STUDY: Definition, objectives, method study - definition, objectives, steps involved- various types of associated charts-out line process charts, flow process charts, two handed process charts and SIMO charts. TIME STUDY: definition, time study, steps involved-equipment, different methods of performance rating- allowances, standard time calculation. 	CO1, CO4
V	 PROJECT MANAGEMENT: Network modeling, Probabilistic model-various types of activity times estimation, programme evaluation review techniques (PERT), probability of completing the project, Deterministic model- critical path method (CPM), critical path calculation, crashing of simple of networks. 	CO1, CO5

Text Books:

1. S.Bhaskar, "Management Science", Anuradha Publications

- 2. O.P. Khanna, "Industrial Engineering and Management", DhanpatRai
- 3. T. R. Banga, S. C. Sharma, N. K. Agarwal, "Industrial Engineering and Management Science" Khanna Publishers.

Reference Books:

- 1. PannerSelvam, Production and Operations Management, PHI, 2004.
- 2. Ralph M Barnes, Motion and Time Studies, John Wiley and Sons, 2004.
- 3. Chase, Jacobs, Aquilano, Operations Management, TMH 10th Edition, 2003.

4. L.S.Srinath, PERT / CPM, affiliate East-West Press, New Delhi, 2000.

5. Phillip Kotler, Marketing Management, Pearson, 2004. 6. S. Bhaskar, "Management Science" Anuradha Publications.

	PR	OJECT MANAC	JEMENT		
Course Code	20HS7701G	Year	IV	Semester	Ι
Course Category	Humanities and Social Science Electives	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
CO1	Understand the concepts of project management.	Understand	L2	1,2,3,4,5
CO2	Explain procedure for analyzing the project risk, market risk and firm risk.	Understand	L2	2
CO3	Apply social-cost benefit analysis on a project.	Apply	L3	3
CO4	Analyze a project by applying various network techniques for planning, scheduling and controlling of different activities of a project.	Analyze	L4	4
CO5	Analyze various aspects to be considered for technical and financial analysis of the Project and the Environmental appraisal	Analyze	L4	5

		Contri	ibution &	of Co Streng	urse ou gth of o	itcome correla	s towa tions (rds acl High:3	nievem , Medi	ent of P um: 2, I	rogram Low:1)	outcom	ies	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1							2		3	2	2	1
CO2	2	1							2		3	2	2	1
CO3	2	1							2		3	2	2	1
CO4	2	1							2		3	2	2	1
CO5	2	1							2		3	2	2	1

	Syllabus	
UNIT	Contents	Mapped
		CO
	MEANING, NATURE AND IMPORTANCE OF PROJECT:	
	Introduction, Concept of project and project management, Characteristics of	
т	project, Project Family tree, Classification of Project, Project selection	CO1
I	process,	COI
	Project life cycle , Project report, Project appraisal, Tools and techniques for	
	project management, Project manager's roles and responsibilities	
	ANALYSIS OF PROJECT RISK, MARKET RISK AND FIRM RISK:	
тт	Introduction, Analysis of project risks- Projects with quantified benefits and	CO1
11	not quantifiable benefits,	
	Market risk- Security market risk, Interest rate risk, Purchasing Power Risk,	002
	Firm risk- Business risk, financial risk.	
III	COST-BENEFIT ANALYSIS:	CO1
	Introduction, need for social cost benefit analysis, Procedure of social cost	CO3

	benefit analysis, Main feature of social cost benefit analysis,	
	COST-BENEFIT ANALYSIS APPROACHS: UNIDO approach, Little-	
	Mirrless approach, SCBA in India, Public investment decision making in	
	India, Limitation of SCBA.	
	NETWORK TECHNIQUES FOR PROJECTMANAGEMENT:	
	Introduction, Network modelling, Probabilistic model-various types of activity	
IV	times estimation, Programme evaluation review techniques (PERT),	CO1
	probability of completing the project,	CO4
	Deterministic model- critical path method (CPM), critical path calculation,	
	crashing of simple of networks	
	TECHNICAL AND FINANCIAL ANALYSIS OF PROJECT:	
	Introduction, Technical Analysis-Materials and inputs, Production, Choice of	
	technology, Product Mix, Plant capacity, Location and site, Structures and	
• •	civil works, Project charts and layouts, financial analysis -Significance of	CO1
v	financial analysis, Utility of financial and accounting statements,	CO5
	ENVIRONMENTAL APPRAISAL OF PROJECTS:	
	Introduction, Types and Environmental Dimensions of a Project, Stresses on	
	Environment, Environmental Impact Assessment Methodologies	

Text Dooks:
1. Prasanna Chandra, Projects Planning, Implementation and Control, Tata McGraw Hill
Publishing Company Limited, New Delhi, 1995.
Reference books
1. Project Management Institute (PMI), A Guide to the Project Management of
Knowledge Newton Square, PA, 1996
2. J.R. Meredith and S.J. Mantel. Project Management: A Managerial Approach. John
Wiley and Sons, New York, 1995.
3. L.S. Srinath, PERT & CPM Principles & Applications, 3rd edition, East west
Press,2001.
e- Resources & other digital material

 https://nptel.ac.in/courses/105/106/105106149/

 https://nptel.ac.in/courses/110/104/110104073/

Course Code	20CE2701A	Year	IV	Semester(s)	I
Course Category	Open Elective- III	Branch	Common to All	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	20MC1301 - Environmental Science
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

DISASTER MANAGEMENT AND PREPAREDNESS

Course Outcomes														
Upon successful completion of the course, the student will be able to:														
CO1	Demonstrate basic terminology and classify types of disasters												L3	
CO2	2 Outline the impacts of disaster												L2	
CO3	Fam	niliariz	ze Dis	aster r	nanag	ement	activi	ities a	nd pha	ases				L2
CO4	Explain the Components of disaster relief, disaster management policies												L3	
CO5	CO5 Develop the responsibilities towards society after disaster												L3	
Contribution of Course Outcomes towards achievement of Program Outcomes											-			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01											PSO2		
CO1	2	2					2			2				2
CO2	2	2					2			2				2
CO3	3	3					2			2				2
CO4	2	2					2			2				2
CO5	2	2					2			2				2
Avg.	2	2					2			2				2
1- Low 2-Medium 3-High														
	Course Content													
	I	NTRO	DUCT	ION &	& DIS	ASTE	RS CL	ASSI	FICAT	ΓΙΟΝ				
	C	oncep	ts and	l defir	nitions	s: disa	ster, 1	hazarc	l, vulr	nerabili	ty, resi	lience,	risks	
	se	severity, frequency and details, capacity, impact, prevention, mitigation.												
UNIT	-1 D	isaster	rs cla	ssific	ation;	natu	ral d	isaster	rs (fl	oods,	draught	, cycl	ones,	CO1
	ve	olcano	es, e	arthqu	iakes,	tsun	ami,	lands	lides,	forest	fires.)	; manı	made	
	di	isaster	s (ind	ustrial	pollu	ution,	nucle	ar rad	liation	, chem	ical spi	lls, ter	rorist	
	st	rikes);	, hazaı	d and	vulne	rabilit	y prof	file of	India.					
	D	ISAST	ER IN	ЛРАС	TS									
	D	isaster	r impa	icts (e	nviroi	nment	al, ph	ysical	, socia	al, ecol	ogical,	econon	nical,	
UNIT	-2 po	political); health, psycho-social issues; demographic aspects (gender, age,											CO2	
	st	special needs); hazard locations; global and national disaster trends; climate												
	cł	nange	and u	ban d	isaster	:S	C							
	D	ISĂST	TER M	ITIG	ATIO	N ANI) PRE	PARE	DNES	SS				
	D	isastei	r ma	nagen	nent	cycle	— i	its pl	hases;	preve	ention,	mitiga	ation,	
UNIT	-3 pi	repared	dness,	relief	and	recove	ery; st	tructu	al and	d non-s	structura	al meas	ures;	CO3
	ri	sk ana	lysis.	vulne	rabilit	y and	capac	ity ass	essme	ent; ear	ly warn	ing syst	tems.	
	R	ole of	remot	e sens	ing ar	nd GIS	S in di	saster	manas	gement		0,00	,	
	P	OST D	DISAS'	FER R	RESPO	DNSE					-			
UNIT	-4 E	merge	ncv m	edical	and r	oublic	health	ı servi	ces: E	nviron	mental	post dis	aster	CO4
	re	spons	e (w	ater.	sanita	tion	food	safe	tv. d	isease	contro	l. seci	urity.	
L	1.0		- ("	,		,	1000		- <u>)</u> , a		201110	-,		

	com respo	nunications); reconstruction and rehabilitation; Roles and onsibilities of government, community, local institutions, role of cies like NDMA SDMA and other International agencies										
	orga	organizational structure, role of insurance sector.										
	DISA	DISASTERS - ENVIRONMENT AND DEVELOPMENT										
UNIT-5	Factor and	Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, land use changes,										
	recoi	etruction and development methods										
	iccol	L appring Desources										
		Learning Resources										
Text Bo	1. R. B. Singh, Disaster Management, Rawat Publications, 20002. Pradeep Sahni, 2004, Disaster Risk Reduction in South Asia, Prenti Hall.3. Singh B.K., 2008, Handbook of Disaster Management: Technic											
Refere Book	Guidelines, Rajat Publication.1. Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June 2003 2. Inter-Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings.											
E-Resou & oth digita mater	irces er al ial	 http://ndma.gov.in/ (Home page of National Disaster Management Authority) http://www.ndmindia.nic.in/ (National Disaster management in India Ministry of Home Affairs). 	,									

Course Code	20EC2701C	Year	IV	Semester	Ι
Course Category	Open	Branch	Commo	Course Type	Theory
	Elective-III		n to All		
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

RESEARCH METHODOLOGY

	Course Outcomes								
Upon s	successful completion of the course, the student will be able to								
CO1	Understand basic concepts and its methodologies (L2)								
CO2	Demonstrate the knowledge of research processes (L3)								
CO3	Apply research articles in their academic projects (L3)								
CO4	Analyze various types of testing tools used in research (L4)								
CO5	Design a research paper (L4)								

Мар	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
No	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* - Average value indicates course correlation strength with mapped PO														
CO/PO &	DO1	DOI	DO 2		DO5	DOC	DO7	DOP	DOG	DO10	РО	DO13	DCO1	DEOD
PSO	POI	PO2	P03	P04	P05	PU0	P0/	PUð	P09	POIU	11	POIZ	P501	P502
CO-1	2							2		2		2		
CO-2	3							3		3		3		
CO-3	2							2		2		2		2
CO-4		3			3	3		3		3		3	3	3
Average* (Rounded to nearest integer)		2						2		2		2		

	Syllabus									
Unit	Contents	Mapped								
No.		CO								
	Introduction: Meaning of Research, Objectives of Research, Types									
	of Research, Research Approaches.									
Ι	Research Ethics: Objectives, codes, policies, conventions of									
	publications, ethics for editors, reviewers and publishers, IPR.	CO1. CO2								
	Research Problem: What is a Research Problem?, Selectingthe									
	Problem, Necessity of Defining a problem.									

	Research Design –Features of Good Design, Important Concepts related to Research Design, Basic Principles of Experimental	
	Designs.	
II	Sampling Design –Sample Design, Sampling and Non- Sampling errors, Goodness of Measurement scales, Sources of error in measurement.	
	Data Collection Methods – Collection of Primary Data – Collection of Secondary data.	CO1-CO3
	Data Preparation : Data Preparation Process, Some problems in Process Missing Values and Outliers Types of	
	Analysis, Statistics in Research.	
III	Descriptive Statistics : Measures of Central Tendency, Measures of Dispersion, Measures of Skewness, Kurtosis, Measures of Relationship, Association in case of Attributes,	CO1, CO4
	Other Measures	
IV	 Sampling and Statistical Inference: Parametric vs Statistic, Sampling and Non-Sampling errors, Sampling Distribution, Degrees of Freedom, Standard Error. Testing of Hypothesis: What is a Hypothesis, Basic Concepts Concerning Testing of Hypothesis, Testing the Hypothesis, Test 	CO1, CO4
	Statistic and Critical Region, Critical Value and Decision	
	Value, Procedure for Hypothesis Testing.	
v	Interpretation and Report Writing : Meaning of Interpretation, Techniques of Interpretation, Precautions in Interpretation Significance of Report Writing, Different Steps in Writing Report, Layout of a Research Paper, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report,	CO1, CO5
	Precautions for Writing Research Reports.	

Learning Resources								
Text Books:								
1. C.R.Kothari, Research Methodology: Methods and Techniques, 2 nd Ed., New Age								
International Publishers,2014.								
2. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, An introduction to Research								
Methodology, RBSA Publishers, U.K., 2002								
References:								
1. Day, R.A., How to Write and Publish a Scientific Paper, Cambridge University								
Press,1992								
2. Anthony, M., Graziano, A.M. and Raulin, M.L., Research Methods: A Process of								
Inquiry, Allyn and Bacon, 2009								
e- Resources & other digital material								
1. https://www.youtube.com/watch?v=8iFfzYVuCuM								
2. <u>https://onlinecourses.nptel.ac.in/noc22_ge08</u>								
3. <u>https://www.youtube.com/watch?v=GSeeyJVD0JU</u>								

EMBEDDED & REAL TIME SYSTEMS

Course Code	20EC2701B	Year	IV	Semester	Ι
Course Category	Open	Branch	Commo	Course Type	Theory
	Elective-III		n to All		
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

	Course Outcomes										
Upon successful completion of the course, the student will be able to											
CO1	Apply design methodologies for embedded systems. (L3)										
CO2	Build embedded systems with specifications and technological choice. (L3)										
CO3	Develop fundamental systems such as sensors, actuators, converters, processors, intra-and inter-communication networks and interfaces. (L3)										
CO4	Utilize modern hardware/software tools for building prototypes of embedded systems. (L3)										

Map No	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)Note: 1- Weak correlation2-Medium correlation* - Average value indicates course correlation strength with mapped PO													
CO/PO & PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2
CO-1	2									2			2	2
CO-2	2									2			2	2
CO-3	3									3			3	3
CO-4	2									2			2	2
Average* (Rounded to nearest integer)	2	2								2			2	2

Syllabus									
Unit No.	Contents	Mapped CO							
Ι	Introduction: History of Embedded Systems, Major Application Areas of Embedded Systems, Purpose of Embedded Systems, Core of the Embedded System, Sensors and Actuators, Communication Interface, Embedded Firmware.	CO1							

·		
II	Hardware Software Co-Design And Programme Modeling: Characteristics of an Embedded System, Quality Attributes of Embedded Systems, Fundamental Issues in Hardware Software Co- Design, Computational Models in Embedded Design, Hardware Software Trade-offs.	CO2
III	Devices in Embedded Systems: Types of supporting devices for an embedded system – various forms of ROM, RAM devices, interrupt sources, Interrupt Service Mechanism, serial port devices, parallel port devices, timers and counting devices.	CO3
IV	Communication Buses for Device Networks: Interfacing Features in Device Ports, Wireless Devices, Networked Embedded Systems, Serial Bus Communication Protocols, Parallel Bus Device Protocols- Parallel Communication Network Using ISA, PCI, PCI-X and Advanced Buses.	CO3
v	Design of Real Time Systems: processors in complex embedded systems, design process in embedded system, optimizing design metrics, Case study for adaptive cruise control system in car.	CO4

1. Embedded Systems Architecture,	Programming and Design-	Raj Kamal, Second
Edition, McGrawHill Education.		

2. Introduction to Embedded System- Shibu KV, Mc-Graw Hill Edition.

References:

Text Books:

- 1. Peckol, "Embedded system Design", JohnWiley&Sons, 2010
- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013
- 3. Embedded/Real-Time Systems, Dr. K.V.K.K. Prasad, dream Tech press

e- Resources & other digital material

- 1. Microsoft PowerPoint pcp_embedded_system_intro (iitb.ac.in)
- 2. NPTEL :: Electrical Engineering Embedded Systems

E-WASTE MANAGEMENT

Course	20EC2701B	Year	IV	Semester	Ι
Code					
Course	Open	Branch	Common to	Course Type	Theory
Category	Elective-III		All		
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes									
Upon successful completion of the course, the student will be able to									
CO1	1 Know about the environmental impacts of e-waste.								
CO2	Apply various concept learned under e-waste management hierarchy.								
CO3	Distinguished the role of various national and internal act and laws								
	applicable for e-waste management and handling.								
CO4	Analyze the e – waste management measures proposed under national and								
	global legislations.								

Mapping of course outcomes with Program outcomes(CO/ PO/PSO Matrix)Note:1- Weak correlation2-Medium correlation3-Strong correlation

	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2	2							2
CO2						2	2							2
CO3						2	2							2
CO4						2	2							2

Syllabus								
Unit No.	Contents	Mapped CO						
Ι	Introduction.	CO1						
	E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management, Technologies for recovery of resources from electronic waste, resource recovery potential of e- waste, steps in recycling and recovery of materials-mechanical processing, technologies for recovery of materials, occupational and							
П	E-waste hazardous on Global trade	CO1.						
	Essential factors in global waste trade economy, Waste trading as a quint essential part of electronic recycling, Free trade agreements as a means of waste trading. Import of hazardous e-waste in India; India's stand on liberalizing import rules, E-waste economy in the organized and unorganized sector. Estimation and recycling of e-	CO2						

		r
	waste in metro cities of India.	
III	E-waste control measures	CO1,
	Need for stringent health safeguards and environmental protection	CO3
	laws in India, Extended Producers Responsibility (EPR), Import of e-	
	waste permissions, Producer-Public-Government cooperation,	
	Administrative Controls & Engineering controls, monitoring of	
	compliance of Rules, Effective regulatory mechanism strengthened by	
	manpower and technical expertise, Reduction of waste at source.	
IV	E-waste (Management and Handling) Rules, 2011; and E-Waste	CO1,
	(Management) Rules, 2016 - Salient Features and its likely	CO4
	implication. Government assistance for TSDFs.	
V	The international legislation: The Basel Convention; The Bamako	CO1,
	Convention. The Rotterdam Convention. Waste Electrical and Electronic	CO4
	Equipment (WEEE) Directive in the European Union, Restrictions of	
	Hazardous Substances (RoHS) Directive	

Text Books

1. E-waste: implications, regulations, and management in India and current global best practices", Johri R., TERI Press, New Delhi

Reference Books

1. Electronic Waste – 1st Edition (Toxicology and Public Health Issues), Fowler B. 2017Elsevier

2. Electronic Waste Management. Science , Hester R.E., and Harrison R.M. 2009

FUNDAMENTALS OF DATA SCIENCE

Course Code	20IT2701A	Year	IV	Semester	Ι
Course Category	Open	Branch	Commo	Course Type	Theory
	Elective-III		n to All		
Credits	3	L-T-P	3-0-0	Prerequisites	DATA
					MINING
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 **Understand** the basic concepts of Data Science (L2)

CO2 Apply different modelling methods (L3)

CO3 **Discuss** the concepts of web mining (L2)

CO4 Analyze the different modelling methods (L4)

Contribution of Course Outcomes towards achievement of Program Outcomes													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3												3	
3	3	3										3	
3		3										3	
3	3											3	
2													
1- Low 2-Medium 3-High													
					Co	urse (Conte	nt					
	Intro	ductio	on to o	lata s	cience	:							
1	The D	Data So	cience	proce	ess: Ro	oles in	a data	a scier	ice proj	ect, sta	ges of a	data	
-1	science project										CO1		
	Managing Data: Cleaning data, Sampling for modeling and validation												
	Madallina Mathaday Chaosing analysing madalar David a									CO1			
Γ-2	Niodelling Niethods: Choosing evaluating models: Problems to machine											CO2	
	learning tasks, Evaluating models,												CO4
	Linea	r and	Logi	stic R	egress	sion:							
	Using Linear Regression: Understanding Linear regression, building a											CO1	
Г-З	linear regression model, Making Predictions										CO2		
	Using Logistic Regression: Understanding Logistic Regression, building										CO4		
	a Logistic regression model, Making Predictions												
	Unsu	pervis	sed m	ethod	s:								CO1
	Clust	ering	Analy	v sis: P	repari	ng Da	ta, K-	Mean	s Algor	rithm			CO2
L -4	Assoc	ciation	n Rule	es: Ov	erviev	v of A	ssoci	ation	rules, N	Aining A	Associa	tions	CO4
	rules								,	U			
	Web	Mini	ng :W	eb Co	ontent	minir	ng, W	eb str	ucture	mining.	Web u	isage	CO1
Γ-5	minin	g, Te	xt min	ing, U	Jnstru	ctured	Text.	, Epis	ode rul	e discov	very for	text	CO3
	,Text	Cluste	ering	0,				· 1		, rate about of j for text			
	Cor PO1 3 3 3 2 1 -1 [-2] [-3] [-4] [-5]	Contribut PO1 PO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 Intro The D science Mana learni Grad Using inear Using a Log Unsu Clust Assoc rules Web T-5 minin	Contribution of PO1 PO2 PO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 Introduction The Data Solic Science programmer Modelling learning tas Intera and Using Line Interation The Data Solic Science programmer F-2 Modelling learning tas Intear and Using Line Intear regree Using Logi a Logistic regree Intear transpondent regree Using Logi a Logistic regree G-4 Unsupervise F-4 Web Minin Total Solic Transpondent Solic Transpondent Joint Solic Transpondent Solic Transpondent Joint Solic Transpondent Solic Transpondent <t< th=""><th>Contribution of CoursPO1PO2PO3PO4334Introduction to of The Data Science science project Managing Data:1-1Introduction to of The Data Science science project Managing Data:1-2Modelling Methol learning tasks, Ev1-3Linear and Logis Using Logistic R a Logistic regress Olistic regress1-4Clustering Analy Association Rule rules1-4Web Mining :W mining, Text min ,Text Clustering</th><th>Contribution of Course OutPO1PO2PO3PO4PO533333333333333321111- LowIntroduction to data set science project Managing Data: Cleam1-1Introduction gata: Cleam1-2Modelling Methods: Clearning tasks, Evaluation time are regression model Using Linear Regression a Logistic Regression model Using Clustering Analysis: P Association Rules: Ov rulesT-4Web Mining :Web Co mining, Text mining, U Text Clustering</th><th>Contribution of Course OutcomesPO1PO2PO3PO4PO5PO633334443333444333444433344443344444334444433444443344444334444433444444144444414444441444445111446111146111117111117111117111117111117111117111117111117111117111117111<!--</th--><th>Contribution of Course Outcomes towarP01P02P03P04P05P06P0731111113331111333111133111113311111331111133111113311111331111133111113311111331111133111114111<th>Contribution of Course Outcomes towards actP01P02P03P04P05P06P07P08333311113333111133311111333111113311111121111111Low2-MediumCourse ConterThe Data Science process: Roles in a data science:The Data Science process: Roles in a data science projectManaging Data: Cleaning data, Samplin1Modelling Methods: Choosing evaluatir1learning tasks, Evaluating models,1Linear and Logistic Regression:1Using Linear Regression: Understandin1linear regression model, Making Prediction1Unsupervised methods:1Clustering Analysis: Preparing Data, K-4Meb Mining :Web Content mining, Web1Web Mining :Web Content mining, Web1Web Mining :Web Content mining, Web</th><th>Contribution of Course Outcomes towards achievenPO1PO2PO3PO4PO5PO6PO7PO8PO933334444433344444333444443334444433444444334444443344444433444444334444443344444433444444334444444144444444141444444414141414141414414141414141414516161616161661616161616166161616161616616161616161661616161</th><th>Contribution of Course Outcomes towards achievement of 1PO1PO2PO3PO4PO5PO6PO7PO8PO9PO1033344444333444443334444433344444334444443344444424444444244444441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium55551Introduction to data science: The Data Science project5766Managing Data: Cleaning data, Sampling for modelin11111-2Modelling Methods: Chosing evaluating models,7771-3Inear regression model, Making Predictions1111-4Linear and Logistic Regression: Understanding Logistic F a Logistic regression model, Making Predictions</th><th>Contribution of Course Outcomes towards achievement of ProgramPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO113333444444333344444433344444443334444444334444444433444444443344444444334444444433444444443344444444334444444433444444443355224444441111111111111111111111111111111111<th>Contribution of Course Outcomes towards achievement of Program OutcoPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12333344444444333344444444333444444444333444444444244444444444244444444441444444444443344444444443344444444443344444444443444444444441152111144441111111111441111111111</th><th>Contribution of Course Outcomes towards achievement of Program OutcomesP01P02P03P04P05P06P07P08P09P010P011P012Pso1333334444433333344444433334444443333444444333444444333444444333444444333444444433344444443334444444333444444443444444444411444444411111144441111114444111111144411</th></th></th></th></t<>	Contribution of CoursPO1PO2PO3PO4334Introduction to of The Data Science science project Managing Data:1-1Introduction to of The Data Science science project Managing Data:1-2Modelling Methol learning tasks, Ev1-3Linear and Logis Using Logistic R a Logistic regress Olistic regress1-4Clustering Analy Association Rule rules1-4Web Mining :W mining, Text min ,Text Clustering	Contribution of Course OutPO1PO2PO3PO4PO533333333333333321111- LowIntroduction to data set science project Managing Data: Cleam1-1Introduction gata: Cleam1-2Modelling Methods: Clearning tasks, Evaluation time are regression model Using Linear Regression a Logistic Regression model Using Clustering Analysis: P Association Rules: Ov rulesT-4Web Mining :Web Co mining, Text mining, U Text Clustering	Contribution of Course OutcomesPO1PO2PO3PO4PO5PO633334443333444333444433344443344444334444433444443344444334444433444444144444414444441444445111446111146111117111117111117111117111117111117111117111117111117111117111 </th <th>Contribution of Course Outcomes towarP01P02P03P04P05P06P0731111113331111333111133111113311111331111133111113311111331111133111113311111331111133111114111<th>Contribution of Course Outcomes towards actP01P02P03P04P05P06P07P08333311113333111133311111333111113311111121111111Low2-MediumCourse ConterThe Data Science process: Roles in a data science:The Data Science process: Roles in a data science projectManaging Data: Cleaning data, Samplin1Modelling Methods: Choosing evaluatir1learning tasks, Evaluating models,1Linear and Logistic Regression:1Using Linear Regression: Understandin1linear regression model, Making Prediction1Unsupervised methods:1Clustering Analysis: Preparing Data, K-4Meb Mining :Web Content mining, Web1Web Mining :Web Content mining, Web1Web Mining :Web Content mining, Web</th><th>Contribution of Course Outcomes towards achievenPO1PO2PO3PO4PO5PO6PO7PO8PO933334444433344444333444443334444433444444334444443344444433444444334444443344444433444444334444444144444444141444444414141414141414414141414141414516161616161661616161616166161616161616616161616161661616161</th><th>Contribution of Course Outcomes towards achievement of 1PO1PO2PO3PO4PO5PO6PO7PO8PO9PO1033344444333444443334444433344444334444443344444424444444244444441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium55551Introduction to data science: The Data Science project5766Managing Data: Cleaning data, Sampling for modelin11111-2Modelling Methods: Chosing evaluating models,7771-3Inear regression model, Making Predictions1111-4Linear and Logistic Regression: Understanding Logistic F a Logistic regression model, Making Predictions</th><th>Contribution of Course Outcomes towards achievement of ProgramPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO113333444444333344444433344444443334444444334444444433444444443344444444334444444433444444443344444444334444444433444444443355224444441111111111111111111111111111111111<th>Contribution of Course Outcomes towards achievement of Program OutcoPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12333344444444333344444444333444444444333444444444244444444444244444444441444444444443344444444443344444444443344444444443444444444441152111144441111111111441111111111</th><th>Contribution of Course Outcomes towards achievement of Program OutcomesP01P02P03P04P05P06P07P08P09P010P011P012Pso1333334444433333344444433334444443333444444333444444333444444333444444333444444433344444443334444444333444444443444444444411444444411111144441111114444111111144411</th></th></th>	Contribution of Course Outcomes towarP01P02P03P04P05P06P0731111113331111333111133111113311111331111133111113311111331111133111113311111331111133111114111 <th>Contribution of Course Outcomes towards actP01P02P03P04P05P06P07P08333311113333111133311111333111113311111121111111Low2-MediumCourse ConterThe Data Science process: Roles in a data science:The Data Science process: Roles in a data science projectManaging Data: Cleaning data, Samplin1Modelling Methods: Choosing evaluatir1learning tasks, Evaluating models,1Linear and Logistic Regression:1Using Linear Regression: Understandin1linear regression model, Making Prediction1Unsupervised methods:1Clustering Analysis: Preparing Data, K-4Meb Mining :Web Content mining, Web1Web Mining :Web Content mining, Web1Web Mining :Web Content mining, Web</th> <th>Contribution of Course Outcomes towards achievenPO1PO2PO3PO4PO5PO6PO7PO8PO933334444433344444333444443334444433444444334444443344444433444444334444443344444433444444334444444144444444141444444414141414141414414141414141414516161616161661616161616166161616161616616161616161661616161</th> <th>Contribution of Course Outcomes towards achievement of 1PO1PO2PO3PO4PO5PO6PO7PO8PO9PO1033344444333444443334444433344444334444443344444424444444244444441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium55551Introduction to data science: The Data Science project5766Managing Data: Cleaning data, Sampling for modelin11111-2Modelling Methods: Chosing evaluating models,7771-3Inear regression model, Making Predictions1111-4Linear and Logistic Regression: Understanding Logistic F a Logistic regression model, Making Predictions</th> <th>Contribution of Course Outcomes towards achievement of ProgramPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO113333444444333344444433344444443334444444334444444433444444443344444444334444444433444444443344444444334444444433444444443355224444441111111111111111111111111111111111<th>Contribution of Course Outcomes towards achievement of Program OutcoPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12333344444444333344444444333444444444333444444444244444444444244444444441444444444443344444444443344444444443344444444443444444444441152111144441111111111441111111111</th><th>Contribution of Course Outcomes towards achievement of Program OutcomesP01P02P03P04P05P06P07P08P09P010P011P012Pso1333334444433333344444433334444443333444444333444444333444444333444444333444444433344444443334444444333444444443444444444411444444411111144441111114444111111144411</th></th>	Contribution of Course Outcomes towards actP01P02P03P04P05P06P07P08333311113333111133311111333111113311111121111111Low2-MediumCourse ConterThe Data Science process: Roles in a data science:The Data Science process: Roles in a data science projectManaging Data: Cleaning data, Samplin1Modelling Methods: Choosing evaluatir1learning tasks, Evaluating models,1Linear and Logistic Regression:1Using Linear Regression: Understandin1linear regression model, Making Prediction1Unsupervised methods:1Clustering Analysis: Preparing Data, K-4Meb Mining :Web Content mining, Web1Web Mining :Web Content mining, Web1Web Mining :Web Content mining, Web	Contribution of Course Outcomes towards achievenPO1PO2PO3PO4PO5PO6PO7PO8PO933334444433344444333444443334444433444444334444443344444433444444334444443344444433444444334444444144444444141444444414141414141414414141414141414516161616161661616161616166161616161616616161616161661616161	Contribution of Course Outcomes towards achievement of 1PO1PO2PO3PO4PO5PO6PO7PO8PO9PO1033344444333444443334444433344444334444443344444424444444244444441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium44441Low2-Medium55551Introduction to data science: The Data Science project5766Managing Data: Cleaning data, Sampling for modelin11111-2Modelling Methods: Chosing evaluating models,7771-3Inear regression model, Making Predictions1111-4Linear and Logistic Regression: Understanding Logistic F a Logistic regression model, Making Predictions	Contribution of Course Outcomes towards achievement of ProgramPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO113333444444333344444433344444443334444444334444444433444444443344444444334444444433444444443344444444334444444433444444443355224444441111111111111111111111111111111111 <th>Contribution of Course Outcomes towards achievement of Program OutcoPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12333344444444333344444444333444444444333444444444244444444444244444444441444444444443344444444443344444444443344444444443444444444441152111144441111111111441111111111</th> <th>Contribution of Course Outcomes towards achievement of Program OutcomesP01P02P03P04P05P06P07P08P09P010P011P012Pso1333334444433333344444433334444443333444444333444444333444444333444444333444444433344444443334444444333444444443444444444411444444411111144441111114444111111144411</th>	Contribution of Course Outcomes towards achievement of Program OutcoPOIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12333344444444333344444444333444444444333444444444244444444444244444444441444444444443344444444443344444444443344444444443444444444441152111144441111111111441111111111	Contribution of Course Outcomes towards achievement of Program OutcomesP01P02P03P04P05P06P07P08P09P010P011P012Pso1333334444433333344444433334444443333444444333444444333444444333444444333444444433344444443334444444333444444443444444444411444444411111144441111114444111111144411
	Learning Resources												
---	---												
Text Books	 Nina Zumel, John Mount: Practical Data Science with R , Dreamtech, 2015 Data Mining Techniques, 2rd Edition, Amm K Puiori 2012. 												
E-Resources & other digital material	2. Data Mining Techniques 3 rd Edition Arun K Pujari 2013 <u>http://nptel.ac.in</u>												

OPERATIONS RESEARCH

Course code	20ME2701A	Year	IV	Semester	Ι				
Course	Open	Bronch	Common to	Course Type	Theory				
category	Elective-III	Dianch	All	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites	-				
Continuous		Semester		Total					
Internal	30	End	70	10tal Morker	100				
Evaluation:		Evaluation:							

СО	Statement: The students will be able to	Skill	Bloom s Level	Unit s
CO1	Understand the basics of linear programming, transportation, queueing, sequencing of jobs, replacement, inventory and simulation problems	Understand, Communication	L2	1,2,3 ,4,5
CO2	Apply linear programming, transportation and assignment models to solve real life problems	Apply, Communication	L3	1,2
CO3	Apply Sequencing, queueing, Game and Replacement theories to solve problems	Apply, Communication	L3	3,4
CO4	Apply knowledge of inventory control and simulation to solve practical industrial problems	Apply, Communication	L3	5

		Contribution of Course Outcomes towards achievement of Program Outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3								3	2		3	2
CO2	3	3								3	2		3	2
CO3	3	3								3	2		3	2
CO4	3	3								3	2		3	2

	Syllabus
Unit	Contents
No	
Ι	Introduction to Operations Research: History, definition, operations research models, phases of implementing operations research in practice, applications.
	Linear Programming : Introduction, formulation, graphical solution, simplex method, artificial variable techniques – Big M and two-phase methods, duality principle.
Π	Transportation : Formulation, initial feasible solution, optimal solution – MODI method, unbalanced transportation problems, degeneracy in transportation problems.
III	Queuing theory : Introduction, Kendall's notation, classification of queuing models, single server and multi-server models, Poisson arrival, exponential service, infinite population Sequencing : Introduction, assumptions, processing n-jobs through two machines, n-jobs through three machines, and graphic solution for processing 2 jobs through n machines with different order of sequence.
IV	Game Theory : Introduction, game with pure strategies, game with mixed strategies, dominance principle, graphical method for 2xn and mx2 games. Replacement Theory : Introduction, replacement of items that deteriorate with time - value of money unchanging and changing, simple probabilistic model for replacement of items that fail completely
V	Inventory control: Introduction, inventory costs, Economic Order Quantity (EOQ)Demand

rate Uniform and replenishment rate infinite, demand rate non uniform replenishment rate infinite, Demand rate uniform, models with and without shortages, inventory model with single price break.

Simulation: Definition, Types of simulation models, phases of simulation, applications of simulation

Learning Resource

Text books:

- 1. Operations Research, by S.D.Sharma, Kedarnath & Ramnath publications (15th edition), 2013.
- 2. Introduction to Operations Research, by Taha, Pearson Education, New Delhi, (8th edition), 2008

Reference books

- 1. Operations Research, (4th edition) by A.M. Natarajan, P. Balasubramani, ATamilarasi, Pearson Education, New Delhi, 2009.
- 2. Operations Research, (2nd edition) by R.Pannerselvam, 2009, PHI Publications, Noida
- 3. Operations Research, (2nd edition) by Wagner, 2007, PHI Publications, Noida
- 4. Operation Research, (4th edition) by J.K.Sharma, 2009, MacMilan publishers, india Ltd. New Delhi.

E-Resources & other digital Material:

1. http://nptel.ac.in/courses/112106134/ 2. http://nptel.ac.in/courses/112106131/

Course Code	20ME2701B	Year	IV	Semester	Ι
Course Category	Open Elective-III	Branch	Common to All	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

CO	Statement	Skill	Blooms	Units
CO1	Discuss the basic concepts of MIS, Decision making, Applications of MIS, Decision support systems, BPR and E- Commerce.	Understand	L2	1,2,3,4,5
CO2	Interpret the MIS decision making and its applications.	Apply	L3	2,3
CO3	Categorise Decision support systems and Business Process Re-Engineering	Apply	L3	4
CO4	Summarise the Electronic commerce environment and its opportunities.	Apply	L3	5

	Syllabus	Course						
		Outcomes						
Unit No	Contents							
	Introduction to MIS: Definition of MIS, Role and Impact of MI							
	MIS: Support to the management, As tool for Management Process,							
Unit-I	Basic model of organization, Modifications to the basic model,							
	organization as a system, MIS: organization, Strategic management of							
	business.							
	Decision Making: Concepts, Methods, Tools, Procedures,	CO1, CO2						
	Organizational decision making, MIS and Decision making concepts,							
T T •4 TT	Information: A Quality Product, Classification of information, Value							
Unit-II	of information, General model of Human as information processor,							
	Types of systems, Handling system complexity, Development of long							
	range plans of the MIS, Development and implementation of MIS,							
	Factors of Success and failure for MIS.							
	Applications: Applications in Manufacturing Sector, Personnel,	CO1, CO2						
	financial, production, materials, marketing management, Applications							
Unit-III	in service sector, creating a Distinctive service, MIS in service							
	industry, Technology of Information systems, Data processing,							
	Transaction processing, Application processing, TQM of Information							
	systems, Programming languages for system coding.							

Unit	Unit-IVDecision support systems and BPR: Concept and philosophy, Deterministic systems, Artificial Intelligence systems, Knowledge based expert system, Enterprise Management systems, ERP basic features EMS and MIS, Business Process Re- Engineering, Process model of organization, Value stream model of the organization MIS and BPR.											C01,	CO3	
(Contr	ibutio	n of C	ourse	Outco	mes t	oward	s the	achiev	ement	of Prog	gram O	utcom	es
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	_	_	3	_	_	2	1	3	2	1	2	3
CO2	1	1	_	_	3	_	_	2	1	3	2	1	2	3
CO3	1	1	-	-	3	-	-	2	1	3	2	1	2	3
CO4	1	1	-	-	3	-	-	2	1	3	2	1	2	3

	Learning Resources					
Toyt	1. W.S. Jawadekar, Management Information Systems: A Global Digital					
Books:	Enterprise Perspective, 5 th Edition, McGraw Hill Education, 2013.					
	2. D. Minoli, Web Commerce Technology Hand Book, 1st edition, McGraw Hill					
	Education, 2000.					
Reference	1. K.C. Laudon and J. Laudon, Management Information Systems: Managing a Digital firm, 11t ^h Edition, Pearson Education, 2012.					
BOOKS:	2. D. Gordon and M. Oslon, Management Information Systems: Conceptual Foundations, Structure and Development, 2nd Edition, McGraw Hill Education Pvt					
	3. R.G. Murdic, J.E. Ross and J.R. Clagget, Information Systems for Modern Management 3 rd Edition PHI 2008					
	4. K.Ravi and A.B. Whinston, Frontiers of Electronic Commerce, 1st edition, Pearson India, 2002.					

Course Code	20CE2702A	Year	IV	Semester(s)	Ι
Course Category	Open Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	20MC1301 - Environmenta 1 Science
Continuous Internal Evaluation:	30	Semester End Evaluation :	70	Total Marks:	100

ENVIRONMENTAL MANAGEMENT & AUDIT

Course	e Outo	comes												
Upon s	uccess	sful con	npleti	on of t	he cou	rse, th	e stude	nt will	l be ab	le to:				
CO1	01 Illustrate basic knowledge on solid waste management												L2	
CO2	Dem	Demonstrate the handling of biomedical waste and its disposal												L3
CO3	3 Distinguish the E-waste sources, problems, control measures and E-waste rules											L3		
CO4	Out	Dutline the basic principles of EIA.										L2		
CO5	Understand the activities in environmental auditing.									L2				
	Contribution of Course Outcomes towards achievement of Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2				2						2	2
CO2	2	2	2				2						2	2
CO3	3	3	3				2						3	2
CO4	2	2	2				2						2	2
CO5	2	2	2				2						2	2
Avg.	2	2	2				2						2	2
	1-	- Low					2-Me	dium				3-Hig	gh	
						Cou	rse (Cont	ent					
	Ι	NTRO	DUC	CTION	N TO	SOLI	D WA	ASTE	MAN	IAGEN	IENT			
	S	Sources and types of municipal solid wastes-waste generation rates-factors												
UNIT	-1 a	affecting generation, characteristics, segregation of solid wastes – source												CO1
	r	eduction	on of	waste	e - o	bjectiv	ves of	wast	e proc	cessing	, eleme	nts of	solid	
	V	vaste n	nanag	ement	: –pub	lic rol	e in so	olid wa	aste m	anagen	nent.			
	E	BIOM	EDIC	AL V	VAST	E MA	NAG	EME	NT					
TINIT	, I	Definition-Sources-Classification of biomedical waste - Objectives of												
UNII	-2 E	Biomedical waste management-segregation-containers for biomedical												
	v	vaste-I	Labell	ing Co	ollecti	on-Tr	anspoi	rt-Disj	posal 1	nethod	S			
	E	E-WAS	STE N	MANA	AGEN	AENT								
LINIT	3 E	E-waste	e: Sou	arces-	Type	es- coi	npone	ents; C	Collect	tion pro	ocess- S	Segrega	tion-	CO3
	-3 E	Disposa	al me	thods;	Effec	et on a	air, wa	ater ai	nd soi	l; Heal	th haza	rds; Ro	le of	005
	iı	ndivid	ual fo	r E-wa	aste m	anage	ment.	Curre	ent E-v	vaste M	Ianagen	nent Ru	les	
	F	ENVIE	ENVIRONMENTAL IMPACT ASSESSMENT (FIA)											
ENVIRONMENTAL IMPACT ASSESSMENT (EIA)														
TINIT		ntrodu	ction-	Defin	ition-	Scope	-Objec	ctives	of E	IA-Bas	ic EIA	Princi	ples,	CO4
UNIT	-4	ntrodu Classifi	ction-	Defin	ition-S EIA-L	Scope Life C	-Objec ycle	ctives Asses	of E sment	IA-Bas -Enviro	ic EIA	Princi l Polic	ples, y of	CO4
UNIT	-4 II C	ntrodu Classifi ndia. <u>E</u>	ction- cation Baselin	Defin n of 1 ne Dat	ition- EIA-I ta Acc	Scope Life C Juisitio	-Objec Cycle	ctives Asses	of E sment mental	IA-Bas -Enviro I Invent	ic EIA onmenta	Princi I Polic	ples, y of A.	CO4

En	vironmental audit Significance for Industry-Elements of Environmental							
auc	lit. Process of environmental audit-Pre audit- Activity -Activities at site-							
Ро	st audit.							
	Learning Resources							
	1. Agarwal, K.M., Sikdar, P.K., Deb., S.C (2005) A Text Book of Environment,							
	Macmillan India Limited.							
	2. Sharma, R.D. (1976), Organisational Management, Light and Life Publishers,							
Text Books	New Delhi.							
	3. Varma and Agarwal, Theory & amp; practice of Management Forward Book							
	Depot, New Delhi							
	1. Kovntz, H and C. Danvel (1978): Essential of management, second edition, Tata							
Reference	Mc Graw Hill publishing company, New Delhi.							
Books	2. Erickson, P.A. (1977) Environmental Impact Assessment – Principles and							
	Erickson, P.A. (1977)							
E-Resources								
& other	http://www.halaaniw							
digital	<u>nttp://nptel.ac.in</u>							
material								

DATABASE MANAGEMENT SYSTEMS

Course Code	20CS2702A	Year	IV	Semester	Ι
Course Category:	Open Elective	Branch	IT/ME/EEE/ ECE/CE	Course Type	Theory
Credits:	3	L - T - P	3-0-0	Prerequisites:	Nil
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcon	nes	
Upon successfu	Il completion of the course, the student will be able to:	
C01	Understand the basic concepts of database management systems	L2
CO2	Apply SQL commands to find solutions for a given application	L3
CO3	Apply ER Modeling to design a database application	L3
CO4	Apply normalization techniques to improve database design.	L3

Contr correl	ibution ations	of Co (3:Sub	urse O stantia	utcome l, 2: M	es towa oderat	rds acl e, 1:Sli	hievem ght)	ent of 2	Progra	m Outc	omes &	Strengt	h of	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3								2	2			3	
CO3	3								2	2			3	
CO4		2							2	2			3	3

Unit No.	CONTENTS	Mapped CO
I	 Introduction to Databases: Characteristics of the Database Approach, Advantages of using the DBMS Approach, A Brief History of Database Applications. Overview of Database Languages and Architectures: Data Models, Schemas andInstances, Three-Schema Architecture and Data 	CO1
	Independence, Database Languages and Interfaces, Database System environment, Centralized and Client-ServerArchitecture for DBMS.	
П	 Relational Model: The Relational Model Concepts, Relational Model Constraints and Relational Database Schemas. SQL: Data Definition, Constraints, Basic Queries and Updates, Views(Virtual Tables)in SQL 	CO2

ш	 Conceptual Data Modeling : High-Level Conceptual Data Models for Database Design, A Sample Database Application, Entity Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles, and Structural Constraints, Weak Entity Types. ER-Diagrams: Refining the ER Design, ER Diagrams, Naming Conventions andDesign Issues 	CO3
IV	Database Design Theory : Functional Dependencies, Normal forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form.	CO4
V	Transaction Processing:Introduction, Transaction and SystemConcepts, Desirable Properties of Transactions.Introduction to Protocols for Concurrency Control in Databases:Two-Phase Locking Techniques for Concurrency Control - Types ofLocks and System Lock Tables.	CO1

Learning Resources
Text books
1. Database Systems Models, Languages, Design and Application Programming, Ramez Elmasri, Shamkant B.Navathe, 6th Edition, Pearson.
References

- 1. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, 3rd Edition, TMH.
- 2. Data base System Concepts, Abraham Silberschatz, Henry F Korth, S.Sudarshan, 5th Edition, McGraw Hill.

e-Resources and other Digital Material

1. https://nptel.ac.in/courses/106/105/106105175/

2. https://onlinecourses.nptel.ac.in/noc21_cs04/

3. https://nptel.ac.in/courses/106/106/106106093/

TELECOMMUNICATIONS

Course Code	20EC2702A	Year	IV	Semester	Ι
Course	Open	Branch	ECE	Course Type	Theory
Category	Elective-IV				
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Infer the basic knowledge of telecommunication system, regulations (L2).
CO2	Make use of revolutionary changes in Tele Communication technologies
	(L3).
CO3	Analyse different components of tele communication system. (L4).
CO4	Appraise the use of various components of telecommunication systems (L4).

Mapping	of co	urse o	utcon	nes wi	ith Pr	ograi	n out	comes	s (CO)	/ PO/I	PSO M	latrix))	
Note: 1-	Weak	correl	ation	2-1	Mediu	m cor	relatio	on	3-Str	ong co	rrelati	on		
* - /	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3									2				
CO3		2								2			2	2
CO4		2								2			2	2
Average* (Rounded	3	2								2			2	2
to nearest integer)	5	2								-			1	2

	Syllabus	
Unit No.	Contents	Mappe d CO
Ι	Telecommunication Systems: Evolution of Tele Communication Systems, Simple telephone communication, Telephones, Telephone System, Facsimile, Internet Telephony, Tele Communication Standards.	CO1 – CO4
II	Cell Phone Technologies : Cellular Telephone Systems, A Cellular Industry Overview, 2G and 3G Digital Cell Phone Systems, Long Term Evolution and 4G Cellular Systems	CO1 – CO4
III	Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless Networks, WiMAX and Wireless Metropoli tan-Area Networks- Infrared wireless- Ultra wideband wireless- Additional wireless applications	CO1 – CO4
IV	Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Cables, Optical Transmitters and Receivers.	CO1 – CO4

Satellite Communication:Satellite Orbits, Satellite CommunicationCCSystems, Satellite Subsystems, Ground Stations, Satellite Applications,CCGlobal Navigation Satellite Systems.CC

Learning Resources

Text Books

- 1. Louis E. Frenzel Jr., Principles of Electronic Communication Systems, 4/e, Mc Graw Hill Publications, McGraw-Hill Education, 2016.
- 2. Telecommunication Switching Systems and Networks, by Thiagarajan Viswanathan, PHI

Reference Books

1. Telecommunication Switching and Networks. By P.Gnanasivam, New Age International

2. Willium C. Y. Lee, "Wireless & Cellular Telecommunications", McGraw-Hill Companies Inc, Third Edition, 2006.1.

2. Wayne Tomasi, Advanced Electronic Communication Systems, 4/e, Pearson Education, 2013.

3. Dennis Roddy, Electronic Communications, 4/e, Pearson Education, 2003.

Course Code	20EC2702B	0EC2702B Year		Semester	Ι
Course Category	Open Elective-IV	Branch	Common to All	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes									
Upon	Upon successful completion of the course, the student will be able to									
CO1	Illustrate the basic concepts of satellite communication and different Frequency									
	allocations for satellite services. (L2)									
CO2	Analyze the satellite orbits and link design for transmission & reception of									
	signals (L4)									
CO3	Analyze various satellite subsystems and its functionality. (L4)									
CO4	Choose appropriate multiple access technique for a given satellite communication									
	application (L3)									

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO 1	PO2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2
CO1	2									1				1
CO2		3								2				2
CO3		3								2				2
CO4	2									2				2
OVER ALL WEIGHT S	2	3								2				2

Syllabus

T T •	G () (
Uni	Contents	Mapped
t		CO
No.		
Ι	Introduction : Historical Back-ground, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services,	CO1
	Applications.	
II	Orbital Mechanics And Launchers: Orbital Mechanics, Look Angle	CO1,
	determination. Orbital perturbations. Orbit determination, launches and	CO2
	launch vehicles, Orbital effects in communication systems performance.	
III	Satellite Subsystems: Attitude and orbit control system, telemetry,	CO1.
	tracking, Command and monitoring, power systems, communication subsystems. Satellite antenna Equipment reliability and Space	CO3
	qualification.	
IV	Satellite Link Design: Basic transmission theory system noise	CO1
1 V	temperature and G/T ratio Design of down links up link design Design of	CO2
	setallite links for specified C/N. System design example	02
	satellite links for specified C/N, systelli design example.	<i></i>
V	Multiple Access: Frequency division multiple access (FDMA)	CO4
	Intermodulation, Calculation of C/N. Time division Multiple Access	
	(TDMA) Frame structure, Examples. Satellite Switched TDMA On-board	
	processing, DAMA, Code Division Multiple access (CDMA).	

Text Books

1. Satellite Communications – Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2rd Edition, 2003

2. Satellite Communications Engineering – Wilbur L. Pritchard, Robert A Nelson and Henri G.SuyderhoudPearson Publications, 2nd Edition, 2003.

Reference Books

1. Satellite Communications : Design Principles - M. Richharia, BS Publications, 2rd Edition, 2003

2. Satellite Communication - D.C Agarwal, Khanna Publications, Mc.Graw Hill, 5th Edition, 2008.

3. Fundamentals of Satellite Communications – K.N. Raja Rao, PHI, 2004.

4. Satellite Communications – Dennis Roddy, McGraw Hill, 2nd Edition, 1996

e- Resources & other digital material

1.

https://nptel.ac.in/courses/117/105/117105131/3.https://nptel.ac.in/courses/108/105/108105159/

FUNDAMENTALS OF ARTIFICIAL INTELLEGENCE

Course Code	20IT2702A	Year	IV	Semester	Ι
	Open Elective-				
Course Category	IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal		Semester			
Evaluation:	30	End	70	Total Marks•	100
	50	Evaluation:	70		100

	Course Outcomes									
Upon suc	Upon successful completion of the course, the student will be able to									
CO1	Know the challenges and concepts of AI.	L2								
CO2	Solve problems using heuristics search algorithms	L3								
CO3	Transform knowledge into rules.	L3								
CO4	Demonstrate Symbolic reasoning under uncertainty	L3								
CO5	Acquainted with expert systems.	L3								

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength ofcorrelations (3:Substantial, 2: Moderate, 1:Slight)													
	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 1 1	PO1 2	PSO1	PSO 2
CO1	3												2	3
CO2		3											3	3
CO3		3											3	3
CO4		3					3						3	3
CO5				3									3	3

Syllabus									
Unit No	Contents	Mappe d							
		CO							
_	What is AI: The AI Problems, What is an AI Techniques, Criteria	CO1							
Ι	for Successes? Problems and problem spaces and Search:								
	Problem as a state space search, Production systems, Problem								
	Characteristics, Production system characteristics.								
	Heuristic search technique: Generate and test, Hill climbing, Best	CO1							
II	First search, Problem reduction, Constraint satisfaction.	, CO2							
Ш	Knowledge Representation issues: Representations and	CO3							
	mappings.								
	Representing knowledge using rules: Procedural knowledge Vs								
	Declarative knowledge, Forward Vs Backward reasoning,								
	matching.								
	Symbolic reasoning under uncertainty: Introduction to Non	CO4							
TT 7	monotonic reasoning, Implementation in DFS and BFS. Weak,								
IV	strong slot and filler structures: Semantic nets, Frames,								
	Conceptual dependency, Scripts								
	Planning: Goal stack planning, Hierarchical planning	005							
V	Expert Systems: Expert system shells, Knowledge acquisition.	005							

Learning Recourses

Text Books

1. Artificial Intelligence, 2nd Edition, E.RichandK. Knight (TMH).

References

- 1. Artificial Intelligence and Expert Systems-Patterson PHI
- 2. Expert Systems Principles and Programming-Fourth Edn, Giarrantana/Riley,Thomson
- 3. PROLOG Programming for Artificial Intelligence. Ivan Bratka- Third Edition–PearsonEducation.

e-Resources & other digital material

http://www.jntuk-coeerd.in/

http://nptel.ac.in/video.php?subjectId=106105079

http://nptel.iitk.ac.in/courses/Webcourse-

contents/IIT%20Kharagpur/Artificial%20intelligence/New_index1.html

Course	20ME2702A	Year	IV	Semester	Ι
Code					
Course	Open	Branch	EEE	Course Type	Theory
Category:	Elective-IV				Theory
Credits:	3	$\mathbf{L} - \mathbf{T} - \mathbf{P}$	3-0-0	Prerequisites:	Basic electrical and electronics engineering
Continuous	30	Semester	70	Total Marks:	100
Evaluation:		End			
		Evaluation:			

MECHATRONICS

CO:	Statement: Upon successful completion of the course, the student will be able to	Skill	Blooms Level	Units
CO1	Explain the concepts related to elements of Mechatronic systems.	Understand, Communication	L2	1,2,3, 4,5
CO2	Summarize the construction and working of sensors used in building mechatronic systems.	Apply, Communication	L3	1
CO3	Illustrate various types of actuation systems and their components.	Apply, Communication	L3	2
CO4	Develop mathematical models using building blocks and make use of these models to find the dynamic response.	Apply, Communication	L3	3
CO5	Summarize the construction and working of closed loop controllers, Micro processor and Micro controllers.	Apply, Communication	L3	4
CO6	Illustrate the features and applications of digital logic, PLC and of Fuzzy logic.	Apply, Communication	L3	5

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes													
	Stre	Strength of correlations (3: High, 2: Moderate, 1: Low)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3									2		2	3	1
CO2	3									2		2	3	1
CO3	3		3							2		2	3	1
CO4	3	3			2					2		2	3	1
CO5	3				2					2		2	3	1
CO6	3				2					2		2	3	1

Course Content						
UNIT-1	 INTRODUCTION: Definition of Mechatronics, evolution of mechatronics, systems, measurement systems, control systems, mechatronic design process, traditional design and mechatronic design, applications of mechatronic systems, advantages and disadvantages of mechatronic systems. SENSORS: classification of sensors, basic working principles, Velocity 	CO1 CO2				

	sensors - Proximity and Range sensors, ultrasonic sensor, laser	
	interferometer transducer, Hall Effect sensor, inductive proximity switch.	
	Light sensors – Photodiodes, phototransistors, tactile sensors – PVDF tactile	
	sensor, micro-switch and reed switch, Piezoelectric sensors, vision sensor	
UNIT-2	PNEUMATIC AND HYDRAULIC ACTUATION SYSTEMS:	
	Actuation systems, Pneumatic and Hydraulic systems- constructional details of	
	filter, lubricator, regulator, direction control valves, pressure control valves, flow	
	control valves, actuators-linear and rotary.	CO1
	ELECTRICAL ACTUATION SYSTEMS: Electrical systems,	CO3
	Mechanical switches, solid state switches, solenoids, DC motors, AC	
	motors, stepper motors. Characteristics of pneumatic, hydraulic, electrical	
	actuators and their limitations.	
UNIT-3	BASIC SYSTEM MODELS: Mathematical models, mechanical system	
	building blocks, electric system building blocks, fluid system building	CO1
	blocks, thermal system building blocks.	CO4
	DYNAMIC RESPONSES OF SYSTEMS: Transfer function, Modelling	04
	dynamic systems, first order and second order systems.	
UNIT-4	CLOSED LOOP CONTROLLERS: Classification of control systems,	
	feedback, closed loop and open loop systems, continuous and discrete	
	processes, control modes, two step mode, proportional mode, derivative	CO1
	control, integral control, PID controller.	CO5
	MICROPROCESSOR AND MICRO CONTROLLER: Introduction,	005
	Architecture of a microprocessor (8085), Architecture of a Micro controller,	
	Difference between microprocessor and a micro controller.	
UNIT-5	DIGITAL LOGIC: Digital logic, number systems, logic gates, Boolean	
	transducer Signal Conditioning and devices for data conversion	
	PROCRAMMARIE I OCIC CONTROLLERS, Introduction basic	
	structure input/output processing programming mnemonics timers	CO1
	internal relays and counters shift register master and jump controls. Data	CO6
	handling Analog input/output selection of a PI C	
	FUZZY LOGIC APPLICATIONS IN MECHATRONICS. Fuzzy logic	
	systems Fuzzy control Uses of Fuzzy expert systems	
	systems, i dzzy control, obes of i dzzy expert systems.	

	Learning Resources
Text Books:	 Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering, (3rdedition), by W Bolton, Pearson Education Press, 2005. Mechatronics System Design, 5th Indian reprint, 2009, by Devdas shetty, Richard A. kolk, PWS Publishing Company
Reference Books:	 Mechatronics Source Book, by Newton C Braga, Thomson Publications, Chennai. Mechatronics, by N. Shanmugam, Anuradha Agencies Publishers. Control sensors and actuators, by C.W.Desilva, Prentice Hall. Design with Microprocessors for Mechanical Engineers, by Stiffler, A.K.McGraw- Hill(1992).
E-Resources & other digital Material:	https://onlinecourses.nptel.ac.in/noc22_me54/course

							ROBO	TICS							
Cou	irse c	ode	20ME	2702B	Year	•		IV	5	Semester			Ι		
Cor cate	irse egory		Op Electi	en ve-IV	Bran	nch		EEE	(Course Type Theory					
Cre	dits		3	3	L-T-	P		3-0-0]	Prerequ	isites		-		
Cor Inte Eva	ntinuo ernal duatio	ous on:	3	0	Sem End Eval	ester uation	:	70	1	Total Marks:100				00	
CO Statement: The students will be able to Skill										Bloom Level	s Uni ts				
CO1	O1 Understand the basic anatomy of robots, actuators, end effectors, robot sensors, programming and applications. Understand							d	L2	1,2, 3,4, 5					
CO2	D2 Understand the working principles of robot actuators, end Understand							d	L2	2					
CO3	App	oly robo	ot progra	amming	g skills					Apply Too	, Mod l Usag	ern e	rn L3		
CO4	CO4 Apply knowledge of robot sensors and their applications Apply							L3	4,5						
Contribution of Course Outcomes towards achievement of Program Outcomes															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3												3	1	
CO2	3	3											3	1	
CO3	3	3	2		2								3	1	

CO4

	Syllabus							
Unit No	Contents							
I	Introduction: Automation and robotics – History of robots -Robot anatomy – classification of robots, major components-robot specifications, selection of robots.							
II	Robot actuators - Pneumatic, Hydraulic actuators, electric & stepper motors End Effectors - types of end effectors, grippers and tools, Requirements and challenges of end effectors.							
III	Robot Programming: - Robot programming languages - programming methods - off and on- line programming - Lead through method - Teach pendent method, simple programs.							
IV	Sensors used in robots: Sensor devices, Types of sensors - contact, position and displacement sensors, Force and torque sensors - Proximity and range sensors - acoustic sensors -slip sensors, Robot vision systems							
V	Applications of robots: Application of robots in industry - material handling, processing operations, assembly, and inspection operations.							

Text books:

- 1. Mikell P. Groover. Industrial Robotics Technology Programming and Applications, McGraw Hill Co., Singapore.
- 2. Robotic Engineering by Richard D.Klafter, Prentice Hall

Reference books

- 1. Introduction to Robotics Saeed B.Niku, Prentice Hall
- 2. Introduction to Robotics John J. Craig, Addison Wesley

E-Resources & other digital Material:

1. 1.http://nptel.ac.in/downloads/112101098/

IoT APPLICATIONS IN ELECTRICAL ENGINEERING

Course Code	20SA8752	Year	IV	Semester(s)	Ι
Course Category	SOC	Branch	EEE	Course Type	Skill Oriented
Credits	2	L-T-P	1-0-2	Prerequisites	Nil
Continuous Internal Evaluation:	-	Semester End Evaluation:	50	Total Marks:	50

Course Outcomes							
Upon su	Upon successful completion of the course, the student will be able to						
CO1	Examine the various fundamentals, architectures and technologies of Internet of things. (L3)						
CO`2	Illustrate the various communication technologies and sensor technologies used in Internet of things. (L3)						
CO3	Demostrate the various device connectivity methods using web and internet on the IoT environment. (L3)						
CO4	Apply the knowledge of Internet of Things in the field of electrical engineering. (L3)						
CO5	Get the ability to engage in independent study to make an effective presentation and submit a report on various technologies.						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				1		1		1				2	
CO2	3				1		1		1				2	
CO3	3				1		1		1				2	
CO4	3				1		1		1				2	
CO5	3								3					

SYLLABUS								
Unit	Contents							
No.		СО						
Ι	The Internet of Things : An Overview of Internet of Things (IoT) – Architecture – Technology behind IoT – Sources of the IoT – M2M Communication – Examples of IoT.	CO 1 CO 5						
II	Design Principles for Connected Devices : Introduction –IoT/M2M systems, Layers and Designs Standardization – Communication Technologies – Data Enrichment, Consolidation and Device Management atGateway – Ease of designing and affordability.	CO 2 CO 5						

III	Design Principles for the Web Connectivity : Introduction – Web Communication protocols for Connected Devices - Message Communication protocols for Connected Devices – Web Connectivity for connected devices network.	CO 3 CO 5				
IV	Internet Connectivity Principles : Internet connectivity, Internet based communication – IP addressing in the IoT – Application Layer Protocols: HTTP, HTTPS.					
V	Sensor technology: Actuator, Sensor data communication protocols, Radio Frequency Identification technology, Wireless Sensor Network Technology.	CO 4 CO 5				

Exp.No	Contents	Mapped CO
1	Familiarization with Arduino/Raspberry Pi and perform necessary software installation.	CO 1
2	Digital I/O Interface – Multicolour Led, IR Sensor, PIR, Slot Sensor	CO 2
3	To interface temperature Sensor with Arduino and write program to print	CO 2
	temperature and humidity readings	
4	Wireless module interface – Bluetooth and WiFi	CO 3
5	Smart Home Andriod App Development using APP Inventor and Arduino	CO 3
6	Design of digital Voltmeter and Ammeter	CO 4
7	Direction and Speed control of DC motor	CO 4

Text Books

1. Raj Kamal, Internet of Things: Architecture, Design Principles, McGraw Hill Education(India) Pvt. Limited, 2nd Edition, 2022.

Reference Books

- 1. Adrian McEwen and Hakim Cassimally, Designing the Internet of Things, Wiley, First edition, 2013.
- 2. Arshdeep Bahga, and Vijay Madisetti, Internet of Things : A Hands-on Approach, VPT publishers, 1st edition, 2014

Web Links

1. https://nptel.ac.in/courses/106105166

ADVANCED ELECTRICAL DRIVES

Course Code	20EE6701A	Year	IV	Semester(s)	Ι
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Power
					Electronics
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the stator voltage-controlled induction motor drive. (L2)					
CO2	Examine the operation of stator frequency control and CSI fed induction motor					
	control (L3)					
CO3	Analyze the concept of Linear Transformation (L4)					
CO4	Describe the field-oriented control of induction machine (L3)					
CO5	Analyze the control of synchronous motor drives. (L4)					
CO6	Submit a report on various control of advanced Electric Drives					

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Stı	rength	of co	rrelat	ions (3:Hig	h, 2: N	Medium,	1:Low))		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													1	2
CO2	3						2				2		1	2
CO3	3			3								2	1	2
CO4		3	3				2				2		1	2
CO5		3		3								2	1	2
CO6									3	3			1	2

	SYLLABUS				
Unit	Contents	Mapped			
No.		СО			
Ι	STATOR VOLTAGE CONTROLLED INDUCTION MOTORS				
	Introduction - Equivalent circuit- Steady state performance equations,	CO2,			
	Variable voltage constant frequency operation - Conventional method -	CO3			
	Variable voltage characteristics Control of induction motor by AC voltage	CO6			
	controllers - Waveforms - speed torque characteristics - Four quadrant				
	operation – Closed loop speed control - different braking methods.				
II	STATOR FREQUENCY CONTROLLED INDUCTION MOTORS	CO2			
	Constant variable frequency operation - constant Volt/Hz operation - speed	CO3			
	torque characteristics, Analysis -Drive operating regions, variable stator	CO4			

	current operation and analysis, six step inverter voltage and frequency	CO6
	control - CSI fed IM variable frequency drives - comparison - Closed loop	
	speed control.	
III	LINEAR TRANSFORMATION	
	Introduction, transformation from three phases to two phases and vice verse,	CO3,
	transformation from rotating axes to stationary axes, physical concepts of	CO4,
	Park's and Clark's transformation	CO6
IV	FIELD ORIENTED CONTROL	CO4,
	Field oriented control of induction machines – Theory – DC drive analogy –	CO5
	Direct and Indirect methods – Flux vector estimation - Direct torque control	CO6
	of Induction Machines – Torque expression with stator and rotor fluxes,	
	DTC control strategy, Vector control strategy	
V	SYNCHRONOUS MOTOR DRIVES	CO4,
	Starting and braking of Synchronous motor drives – speed control of	CO5,
	synchronous motors – adjustable frequency operation of synchronous motors	CO6
	- voltage source inverter drive with open loop control – self-controlled and	
	separate controlled synchronous motor.	

Text	Text Books					
1.	Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education 2002.					
2.	N. Mohan, Power Electronics- Converters, Applications and Design, 3rd Ed., John Wiley &					
	Sons, 2003.					

Reference Books

- 1. Vedam Subramanyam, "Electric Drives Concepts and Applications", McGraw Hill, Second Edition, 2010.
- 2. Gobal K.Dubey, "Fundamentals of Electrical Drives", Narosal Publishing House, New Delhi, Second Edition ,2009 .
- 3. R.Krishnan, "Electric Motor Drives Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2003.
- 4. M. Rashid, Power Electronics- Circuits, Devices and Applications, 3rd Ed., Prentice Hall, 2004.

Web Links

1. <u>https://nptel.ac.in/courses/108/104/108104140/</u>

2. <u>https://nptel.ac.in/courses/108104011</u>

GRID INTEGRATION OF RENEWABLE ENERGY SYSTEMS

Course Code	20EE6701B	Year	IV	Semester(s)	Ι
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon suc	Upon successful completion of the course, the student will be able to					
CO1	Understand the issues related to the integration of distributed renewable generation into the network.(L2)					
CO2	Apply knowledge about various conversion technologies for grid stabilization (L3)					
CO3	Analyze various integration techniques for RE sources.(L4)					
CO4	Examine power system operation with various integration methods (L3)					
CO5	Ability to apply suitable integration technique and submit a report					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3		2			1	1					1	3	1
CO3		3	2	2			2	2			1	1	3	1
CO4	2				2		2						3	1
C05	3						3		3	3		3	3	1

	SYLLABUS				
Unit	Contents	Mapped			
No.		СО			
Ι	Introduction:	CO1			
	Renewable Sources of Energy, Renewable Energy Versus Alternative	CO2			
	Energy, Planning and Development of Integrated Energy, Renewable Energy	CO3			
	Economics, Integration of Renewable Energy Sources, Energy Recovery	CO5			
	Time, Sustainability, Modern Electronic Controls of Power Systems.				
II	Interconnection Technologies :	CO1			
	Principles of Power Injection, Converting Technologies, Power Converters	CO2			
	for Power Injection into the Grid, Power Flow, Interconnection	CO3			
	Technologies: Synchronous Interconnection, Induction Interconnection,	CO4			
	Inverter Interconnection.	CO5			
III	Interconnection Considerations:	CO1			
	Voltage Regulation, Integration with Area EPS, Response to Voltage	CO3			
	Disturbance, Response to Frequency Disturbance, Loss of Synchronism.	CO4			
	Feeder Reclosing Coordination, Unintentional Islanding Protection.	CO5			

r		
IV	Integration of Alternative Energy sources :	CO1
	IEEE 1547, National Electrical Code, UL Standards, Interconnection	CO2
	Examples for Alternative Energy Sources: Synchronous Generator for Peak	CO3
	Demand Reduction, Small Grid-Connected Photovoltaic System. Grid	CO4
	Integration of PV systems.	CO5
V	Integration of Multiple Renewable Energy Sources:	CO1
	DC-Link Integration, AC-Link Integration, HFAC-Link Integration,	CO2
	Islanding and Interconnection Control, DG Control and Power Injection, DG	CO3
	System operating as Part of Utility Power System.	CO4
		CO5

- 1. Felix A. Farret and M. Godoy Simoes,"Integration of Alternative sources of Energy", IEEE Press Wiley-Interscience publication, 2006.
- 2. Majid Jamil, M. Rizwan, D.P.Kothari ,"Grid integration of solar photovoltaic systems", , CRC Press (Taylor & Francis group), 1st Edition,2017.

Reference Books

Text Books

- 1. Marco H. Balderas ,"Renewable Energy Grid Integration", Nova Science Publishers, New York, 2009
- 2. Ali Keyhani Mohammad Marwali and MinDai,"Integration and Control of Renewable Energy in Electric Power System"John Wiley publishing company,2010
- 3. S. Chowdhury, S.P. Chowdhury and P. Crossley, "Microgrids and Active Distribution Networks", IET Power Electronics Series, 2012
- 4. G.Masters, "Renewable and Efficient Electric Power Systems", IEEE-Wiley Publishers, 2013

e-Resources

https://www.irena.org/publications/2022/Apr/Grid-codes-for-renewable-poweredsystems

SPECIAL ELECTRICAL MACHINES

Course Code	20EE6701C	Year	IV	Semester	Ι
Course Category	Honors	Branch	E.E.E	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Electrical Machines I & II
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon s	uccessful completion of the course, the student will be able to					
CO1	Understand the concepts of special machine operation.					
CO2	Examine the performance characteristics of stepper and switched reluctance motor. (L3)					
CO3	Analyze the concepts of control, torque of stepper and switched reluctance machines. (L4)					
CO4	Develop the performance characteristics of permanent magnet, BLDC and linear					
	induction motors. (L3)					
CO5	Outlines the concepts of control, torque of permanent magnet, BLDC and linear					
	induction motors. (L4)					
CO6	Submit a report on permanent magnet, Stepper motor, switched reluctance motor					
	BLDC motor and linear induction motor.					

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1		1				1	2	1
CO3		3		3									2	1
CO4	3					1		1				1	2	1
CO5		3		3									2	1
CO6									3	3				

Syllabus									
Unit	Contents	Mapped							
No.		CO							
Ι	Stepper Motors	CO1							
	Principle of operation of Stepper Motor, Constructional details,	CO2							
	Classification of stepper motors, Different configuration for switching the	CO3							
	phase windings, Control circuits for stepper motors, Open loop and closed	CO6							
	loop control of two-phase hybrid stepping motor.								
II	Switched Reluctance Motors								
	Motors Construction and Principle of operation of Switched Reluctance	CO1							
	Motor, Comparison of conventional and switched reluctance motors –								
	Design of stator and rotor pole arcs, Torque producing principle and torque								
	expression, Different converter configurations for SRM, Drive and power	CO6							
	circuits for SRM, Position sensing of rotor, Applications of SRM								

III	Permanent magnet materials and PMDC motors :									
	Introduction-classification of permanent magnet materials used in electrical	CO1								
	machines, minor hysteresis loop and recoil line-Stator frames of	CO1								
	conventional dc machines, Development of electronically commutated dc	CO4 CO5								
	motor from conventional dc motor, Permanent-magnet materials and									
	characteristics, B-H loop and demagnetization characteristics, high									
	temperature effects reversible losses-Irreversible losses, Mechanical									
	properties, handling and magnetization Application of permanent magnets									
	in motors-power density, operating temperature range-severity of operation									
	duty									
	Permanent Magnet Synchronous Motor (PMSM):									
	Construction, Principle of Operation, EMF Equation, Torque Equation,									
	Phasor Diagram, Circle Diagram, Comparison of Conventional and PMSM.									
	Control of PMSM. Applications									
IV	Permanent Magnet Brushless DC Motor	CO1								
	Principle of operation of BLDC motor. Types of constructions, Surface	CO4								
	mounted and interior type permanent magnet DC Motors, Torque and EMF	CO5								
	equations for Square wave & Sine wave for PMBLDC Motor, Torque	CO6								
	Speed characteristics of Square wave & Sine wave for PMBLDC Motor.									
	Merits & demerits of Square wave & Sine wave for PMBLDC Motor									
	Performance and efficiency, Applications.									
V	Linear Induction Motors (LIM)	CO1								
	Construction, principle of operation, Double sided LIM from rotating type	CO4								
	Induction Motor, Schematic of LIM drive for traction, Development of one-	CO5								
	sided LIM with back iron- equivalent circuit of LIM.	CO6								
	Learning Resources									
Text	Books									
1.	T.J.E. Miller, "Brushless Permanent magnet and reluctance motor drives ", Cla	arenden								
	press, Oxford.,2 nd edition, 1989,									
2.	K. Venkata Ratnam, "Special electrical Machines", University press, New De	lhi, 1 st								
	edition,2009.									
Refe	rence Books									
1.	AE Clayton and NN Hancock, "The Performance and Design of Direct Curren	ıt								
	Machines", CBS Publishers, 3rd edition, 2004.									
2.	M.G. Say, "Performance and Design of A.C. Machines", ELBS and Pitman &	Sons, 4th								
	edition, 2013.									
e- Re	esources & other digital material									
http	s://nptel.ac.in/courses/108102156									
http	s://nptel.ac.in/courses/108/102/108102146/									

SEMICONDUCTOR DEVICE MODELING

Course Code	20EE6701D	Year	IV	Semester(s)	Ι
Course Category	Honors	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Electronic Devices & Amplifier Circuits
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to								
CO1	Understand Basic terminologies Semiconductor Device Modeling (L2)								
CO2	Illustrate the Large signal model and small signal of the BJT (L3)								
CO3	Construct the Large scale and small signal model of JFET and MOSFET (L3)								
CO4	Analyze the effect of temperature of the BJT,FET and MOSFET (L4)								
CO5	Assessing the modeling parameters of BJT and MOS devices (L4)								
CO6	Submit a report on BJT,FET and MOS device modeling.								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3	3		2									2	1
CO3	3				2								2	1
CO4		3	3	2									2	1
CO5			3		3								2	1
CO6									3	3			2	1

SYLLABUS								
Unit	Contents	Mapped						
No.		CO						
Ι	PN-Junction Diode and Schottky Diode DC Current-Voltage Characteristics-Static Model-Large signal Model-Small Signal Model-Temperature and Area Effects on the Diode Model	CO2, CO3, CO6						
II	Bipolar Junction Transistor (BJT) Transistor Conventions and Symbols- Ebers-Moll Static Model-Large Signal Model-Small Signal Model-Gummel Poon Static Model-Large SignalModel- Small Signal Model-Temperature and Area Effects on the BJT Model.	CO2, CO3, CO6						

III	Junction Field-Effect Transistor(JFET)	CO3,
	Static Model-Large Scale Model-Small Scale Model- Temperature and Area	CO4,
	Effects on the JFET Model.	CO6
IV	The MOS Transistor	CO4,
	Structure and Operating Regions of the MOS Transistor-Equations for Level	CO5,
	1 Model-Level 2 Model-Level 3 Model-Effects of Series resistance-small	CO6
	signal model- The effects of Temperature	
V	BJT and MOS Parameter Measurements	CO4,
	BJT-input and model Parameters-Parameter measurements- MOS parameter	CO5,
	measurements- Calculation of Parameters of the Level 1Model, Level 2	CO6
	Model and Level 3 Model	

Text Books

- 1. Paolo Antognetti, Giuseppe Massobrio, Semiconductor Device Modeling with SPICE, McGraw-Hill , 1993
- 2. Nandita dasgupta, amitava dasgupta, "semiconductor devices modelling and technology,PHI,2004

Reference Books

- 1. Giuseppe Massabrio , Paolo Antognetti , "Semiconductor Device Modeling with Spice", second edition, Tata McGraw-Hill, 2010
- 2. Christopher M. Snowden, Robert E. Miles, Compound Semiconductor Modelling, Springer-Verlag, , Springer London Ltd, 1993

Web Links

1. https://nptel.ac.in/courses/117106033

Course Code	20CS5701	Year	IV	Semester(s)	Ι
Course Category	Minor in CSE	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	Computer
					Networks,
					Operating
					Systems
Continuous	20	Semester	-		100
Internal	30	End	70	Total	100
Evaluation:		Evaluation:		Marks:	

CLOUD COMPUTING

	Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to								
CO1	Understand the basic concepts of virtualization and Cloud Computing. (L2)								
CO2	Apply cloud computing framework to build and deploy customized applications. (L3)								
CO3	Analyse the given application and choose suitable platform for deploying cloud. (L4)								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2													
CO2	3								2	2			3	
CO3	3								2	2			3	
CO4		2							2	2			3	3

SYLLABUS								
Unit	Contents	Mapped						
No.		СО						
I	Introduction to Cloud: Cloud Computing at a Glance, The Vision of Cloud Computing, Defining a Cloud, A Closer Look, Cloud Computing Reference Model. Characteristics and Benefits, Challenges Ahead, Historical Developments. Virtualization: Introduction, Characteristics of Virtualized Environment, Taxonomy of Virtualization Techniques, Virtualization and Cloud computing, Pros and Cons of Virtualization, Technology Examples- VMware and Microsoft Hyper-V.	CO1						
Π	Cloud Computing Architecture : Introduction, Cloud Reference Model, Architecture, Infrastructure / Hardware as a Service, Platform as a Service, Software as a Service, Types of Clouds, Public Clouds, Private Clouds, Hybrid Clouds, Community Clouds, Economics of the Cloud, Open Challenges, Cloud Interoperability and Standards, Scalability and Fault Tolerance.	CO1, CO2, CO3						

	Aneka: Cloud Application Platform Framework Overview, Anatomyof	
	the Aneka Container, From the Ground Up: Platform Abstraction Layer,	
	Fabric Services, Foundation Services, Application Services, Building	001
TTT	Aneka Clouds, Infrastructure Organization, Logical Organization, Private	COI,
111	Cloud Deployment Mode. Public Cloud Deployment Mode. Hybrid	CO2,
	Cloud Deployment Mode. Cloud	CO3
	Programming and Management, Aneka SDK, Management Tools.	
	Cloud Applications: Scientific Applications – Health care, Geoscience	
	and Biology Business and Consumer Applications- CRM and FRP	
IV	Social Networking Media Applications and Multiplayer Online	CO1,
	Gaming	CO3
	Claud Districtions in Laboration American Web Consistent Consistent	
	Cloud Platforms in Industry: Amazon web Services- Compute Services,	
	Storage Services, Communication Services and Additional Services.	
v	Google App Engine-Architecture and Core Concepts, Application Life-	CO1,
•	Cycle, cost model. Microsoft Azure- Azure Core	CO3
	Concepts, SQL Azure.	

Text Books 1. Mastering Cloud Computing, Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi, 2013,TMH.

Reference Books

- 1. Cloud Computing Principles and Paradigms, Rajkumar Buyya, James Broberg, AndrzejGoscinski, Wiley Publishing.
- 2. Cloud Application Architectures, George Reese, First Edition, O"Reilly, Media 2009.
- 3. Cloud Computing web based Applications that change the way you work and collaborate Online, Micheal Miller, Pearson Education.

E- Resources & other digital material

- 1. http://www.slideshare.net/himanshuawasthi2109/cloud-computing-ppt-16240131
- 2. https://nptel.ac.in/courses/106105167
- 3. https://www.youtube.com/watch?v=r8Lu_BjxlZc
- 4. http://video.mit.edu/watch/mitef-nyc-cloud-computing-8347/

Course Code	20IT5751	Year	IV	Semester(s)	Ι
Course Category	Minor in IT	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	DCCN
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

CLOUD COMPUTING

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	Understand Fundamental Concepts and Models of Cloud Computing and CloudEnabling						
	Technologies, Infrastructure Mechanisms. (L2)						
CO2	Determine Cloud Infrastructure Mechanisms. (L3)						
CO3	Determine different Cloud Maintenance strategies. (L3)						
CO4	Analyze Cloud Architectures. (L3)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Str	ength	of co	rrelat	ions (.	3:Hig	h, 2: N	/ledium,	I:Low)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												2	
CO2	3			3									2	
CO3	3			3									2	
CO4	3	3											2	

	SYLLABUS						
Unit	Contents	Mapped					
No.							
Ι	 Understanding Cloud Computing: Cloud origins and influences, basic concepts andterminology, goals and benefits, risks and challenges. Fundamental Concepts and Models: Roles and boundaries, cloud characteristics, cloud delivery models, cloud deployment models 	CO1					
II	Cloud Enabling Technology: Datacenter technology, virtualization technology, web technology, multitenant technology, service technology.						
III	Cloud Infrastructure Mechanisms: Logical network perimeter, virtual server, cloud storage device, cloud usage monitor, resource replication	CO1, CO2					
IV	Specialized Cloud Mechanisms : Automated Scaling Listener, Load Balancer, SLA Monitor, Pay-Per- Use Monitor, Audit Monitor, Fail over System, Hypervisor, Resource Cluster, Multi-Device Broker, State Management Database.						
V	Fundamental Cloud Architectures: Workload distribution Architecture, resource pooling architecture, dynamic scalability architecture, elastic bresource capacity architecture, service load balancing architecture, cloud bursting architecture, elastic disk provisioning architecture, redundant storage architecture.	CO1, CO4					

Text Books

1. Thomas Erl, Ricardo Puttini, Zaigham Mahmood, Cloud Computing: Concepts ,Technology &Architecture, Prentice Hall,2013.

Reference Books

- 1. JohnW. Rittinghouse, JamesF. Ransome, Cloud Computing: Implementation, Management andSecurity, CRC Press,2012.
- 2. AnthonyT.Velte, TobyJVelte Robert Elsenpeter, Cloud Computing a practical approach,McGrawHill,2010.
- 3. MichaelMiller,CloudComputing:WebbasedApplicationsThatChangetheWay You Work and Collaborate Online, QuePublishing,2008.

E- Resources & other digital material

NPTEL VIDEO LECTURES

Course Code	20EC5701	Year	IV	Semester(s)	Ι
Course Category	Minor in ECE	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

COMMUNICATION SYSTEMS

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Understand Analog and Digital modulation and demodulation techniques. (L2)					
CO2	Analyse Analog to Digital conversion techniques (L4)					
CO3	Analyse Analog and Digital modulation Systems (L4)					
CO4	Develop a GSM Cellular system for Mobile communications. (L3).					

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Str	rength	of co	rrelat	ions (.	3:Hig	h, 2: N	Iedium ,	1:Low)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2		2		
CO2		3								3				
CO3		3								3				
CO4	2									2				2

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	 Block diagram of communication system, Need for modulation. Amplitude Modulation: Time domain and frequencydomain description of AM, single tone modulation, Generationof AM waves: square law Modulator, Switching modulator. Demodulation of AM waves: Square law detector, Envelopedetector. DSBSC, SSBSC and VSBSC Modulations. 	CO1,CO3
II	Angle Modulation: Basic concepts of Phase and Frequency Modulation, Single tone frequency modulation, Narrow band FM, Wide band FM. Generation of FM waves: Indirect FM, Direct FM. Foster- Seeley Discriminator, Zero crossing detectors.	C01,C03
III	 Pulse Modulation: Generation & Demodulation of Pulse Amplitude Modulation, Pulse Width Modulation and Pulse Position Modulations. Waveform Coding Techniques: Introduction, Pulse codemodulation (PCM), Delta modulation, Adaptive delta modulation, Differential Pulse Code Modulation (DPCM). 	CO1,CO2
IV	Digital Modulation Techniques: Coherent Phase Shift Keying, Coherent Frequency Shift Keying, Quadrature Phase Shift Keying, Non Coherent Frequency Shift Keying, Differential Phase Shift keying.	CO1, CO3

	Multiplexing: Time Division Multiplexing and Frequency Division Multiplexing.	
V	 Cellular & Mobile Systems: Introduction to Cellular Mobile System, operation of cellular systems, Hexagonal shaped cells. Global System for Mobile (GSM): GSM Services and features, GSM System architecture, GSM radio subsystem, GSM Channel types, GSM Traffic channels, GSM Control channels, Examples of GSM call, Frame structure for GSM. 	CO1,CO4

Text Books

- 1. S. Haykin- Introduction to Analog and Digital Communication System, John Wiley andSons,3rd Ed., 2009.
- W.C.Y. Lee Mobile Cellular Telecommunications, Tata McGraw Hill, 2nd Ed., 1995.

Reference Books

- 1. Sam Shanmugam Digital and Analog Communication Systems, John Wiley, 1979.
- 2. A B Carlson– Communication systems, McGraw-Hill, 4th Ed., 2002
- 3. H.Taub, D. Schilling Principles of Communication Systems, TMH, 3rd Ed., 2008
- 4. Kamilo Feher- Wireless Digital Communications, PHI, 2003.

E- Resources & other digital material

- 1. http://www.ece.utah.edu/~npatwari/ece5520/lectureAll.pdf
- 2. http://nptel.iitm.ac.in/syllabus/syllabus.php?subjectId=117105077
- 3. http://nptel.iitm.ac.in/syllabus/117103016/
- 4. http://nptel.iitm.ac.in/video.php?courseId=1036

Course Code	20EC5702	Year	IV	Semester(s)	Ι
Course Category	Minor in IoT	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Internet of
					Things
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

IOT NETWORKS

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Interpret the impact and challenges posed by IoT networks leading to new						
	architecturalmodels (L2)						
CO2	Identify security vulnerabilities in wireless networks, IoT applications and						
	devices. (L3)						
CO3	Demonstrate the use of wireless technologies for IoT (L3)						
CO4	Distinguish relevant communication protocols of IOT (L4)						
CO5	Interpret the services request response and publish subscribe of IOT application						
	layer. (L3)						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2			2	2
CO2	3									3			3	3
CO3	2									2			2	2
CO4		2								2			2	2
CO5	2									2			2	2

SYLLABUS							
Unit	Contents						
No.		CO					
Ι	INTRODUCTION: M2M and IoT, Layered Architectures, System Components, Applications	CO1,CO2					
II	Concepts of IOT Networking: IOT Networking, Types of Networks, Devices-Actuators and Controllers, Gateways; Security, Wireless Sensor Networks.						
III	IOT Protocol Layers: Physical and Link layers: About physical and link layers, Wireline: Ethernet, ITU-T G.9903, IEEE1901.2, MS/TPI Wireless: IEEE802.11, IEEE802.15.3, IEEE802.15.4, Bluetooth Low Energy, ITU-T G.9959, DECT ULE, and NFC	CO1,CO3					
IV	Network and Transport Layers: Need for IP IPv6, 6Low PAN: Addresses, Header Format, Routingand Forwarding, Header Compression, Fragmentation, Security Considerations, TCP and 6Low PAN						
Application Layer:

V Architectures, Request/Response: REST Architecture, HTTP, XMPP, CoAP Publish/Subscribe: MQTT,AMQP

Learning Resources						
Text Books						
1. Rolando Herrero-Fundamentals of IoT Communication Technologies, Springer						
Publisher, I st Ed., 2022						
2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry-						
IoT Fundamentals: Networking Technologies, Protocols and Use cases for the						
Internetof Things, CISCO Press, 2017						
Reference Books						
1. Olivier Hersent, David Boswarthick and Omar Elloumi-The Internet of Things: Key						
applications and Protocols, Wiley						
2. Vijay Madisetti and Arsh deep Bahga-Internet of Things (A Hands on Approach), 1 st						
Ed., VPT, 2014. (ISBN: 978-8173719547)						
3. Raj Kamal-Internet of Things: Architecture and Design Principles, 1 st Ed., McGraw						
Hill Ed 2017 (ISBN: 978-9352605224)						

E- Resources & other digital material

1. https://nptel.ac.in/courses/106/105/106105166/

Course Code	20ME5701	Year	IV	Semester(s)	Ι			
Course Category	Minor in Automobile Engineering	Branch	EEE	Course Type	Theory			
Credits	4	L-T-P	3-1-0	Prerequisites	NIL			
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100			

ALTERNATE FUEL AND EMISSION CONTROLS IN AUTOMOTIVES

Course Outcomes							
Upon su	Upon successful completion of the course, the student will be able to						
CO1	Understand the fundamental concepts of Alternative fuels and their emission						
	control. (L2)						
CO2	Illustrate various pollutants emitting from automotive and their effects and control						
	techniques. (L3)						
CO3	Analyse the pollutant characteristics and methodologies, testing equipment used						
	to measure pollutants. (L4)						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	-	-	2	-	-	-	-	1	3	1
CO2	2	1	-	-	-	-	2	-	-	-	-	1	3	1
CO3	2	1	-	-	-	-	2	-	-	-	-	1	3	1

	SYLLABUS							
Unit	Contents							
No.		CO						
I	Alternate fuels : Introduction to alternate energy sources, availability, properties of biofuels, methanol, ethanol, vegetable oils, biodiesel. Gaseous fuels: hydrogen, natural gas, compressed natural gas (CNG), liquefied petroleum gas(LPG) ,Hydrogen ,Producer gas, Oxygenated fuels: benzol, diethyl ether (DEE), dimethyl ether (DME)-properties and their performance.	CO1, CO3						
II	Pollutants and emissions: Types of pollutants, HC, CO, CO2, NOx, smoke and soot other emissions: aldehydes, sulphur, Emission standards-Bharat stage, Euro norms, Effect of emissions on environment, human health transient operation effects on pollution							
III	Performance and emission characteristics: alternate fuels Emission characteristics in SI engines, alcohol – gasoline blends, methanol reformed gas engine. Use of alcohols in CI engines. Properties, production and storage methods of hydrogen, safety precautions, Biogas production and its properties, properties of LPG and CNG. Performance, combustion and emission characteristics of hydrogen, biogas, LPG and CNG in SI and CI engines.	CO1, CO2, CO3						

IV	Emission control techniques: Engine design changes, Engine operating	CO1,				
	parameters, EGR systems, glow plugs, thermal converters, Catalytic	CO2,				
	converters: classification, honey comb, 2-way, 3-way catalytic converters,	CO3				
	Particulate filter, Selective catalytic reduction (SCR) systems, Fumigation,					
	water injection, secondary air injection, enhanced evaporative emission					
	control system (EVAP), PCV system.					
	Methodology and equipment to measure pollutants: testing equipment-	CO1,				
	Exhaust gas analyzer, Orsat apparatus, NDIR, FID, Chemiluminescent	CO3				
\mathbf{V}	analyzers, Gas chromatography, smoke meters, measurement of CO2 Test					
•	procedures: ECE, FTP Tests. SHED Test -chassis dynamometers, dilution					
	tunnels, Cycle test-I, Cycle test-II.					

Learning Resources

Text Books

- 1. V. Ganesan, Internal combustion engines, 4/e, McGraw Hill, 2015.
- 2. J. Erjavec, A systems approach to automotive technology, 2/e, Cengage Learning, 2013.

Reference Books

- 1. J. B. Heywood, Internal Combustion Engines Fundamentals, McGraw Hill, 2017.
- 2. M.F. Hordeski, Alternative Fuels: The Future of Hydrogen, The Fairmont Press, Inc., 2008.
- 3. R.K. Rajput, A textbook of Internal Combustion Engines, 2/E, Laxmi Publications (P) Ltd, 2007.
- 4. Alternative Fuels: Fuel Cells and Natural Gas, Society of Automotive Engineers, Incorporated,2000.
- 5. S.S. Thips, Alternative Fuels: Concepts, Technologies and Developments, Jaico PublishingHouse, 2010

E- Resources & other digital material

1..<u>https://nptel.ac.in/courses/112/104/112104122/</u>

2..<u>https://ocw.mit.edu/courses/materials-science-and-engineering/3-080-economic-environmental-issues-in-materials-selection-fall-2005/</u>

Course Code	20ME5702	Year	IV	Semester(s)	Ι
Course Category	Minor in Digital Manufacturing	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Basic
					Manufacturin
					gProcesses
Continuous	20	Semester	70		100
Internal	30	End	70	Total	100
Evaluation:		Evaluation:		Marks:	

INDUSTRY 4.0 and IIoT

Course Outcomes

Upon successful completion of the course, the student will be able to									
CO1	Illustrate how Industry 4.0 will change the current manufacturing technologies and								
	processes by digitizing the value chain. (L2)								
CO2	Discuss the drivers and enablers of Industry 4.0. (L2)								
CO3	Apply various IIoT-related protocols. (L2)								
CO4	Explain simple IIoT Systems using Arduino andRaspberry Pi. (L2)								

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		1		2							2		
CO2	3		1		2							2		
CO3	3		1		2							2		
CO4	3		1		2							2		

SYLLABUS						
Unit	Contents	Mapped				
No.		CO				
I	Introduction to Industry 4.0: Industry 4.0: Globalization and Emerging Issues, The Fourth Revolution, LEAN Production Systems, Mass Customization, Smart and Connected Business Perspective, Smart Factories	CO1				
II	Industry 4.0: Cyber Physical Systems and Next Generation Sensors, Collaborative Platform and Product Lifecycle Management, Augmented Reality and Virtual Reality, Artificial Intelligence, Big Data and Advanced Analysis	CO1, CO2				
III	Introduction to HoT: Architectural Overview, Design principles and needed capabilities, IoT Applications, Sensing, Actuation, Basics of Networking, M2M and IoT Technology Fundamentals- Devices and gateways, Data management, Business processes in IoT, Everything as a Service (XaaS), Role of Cloud in IoT, Security aspects in IoT.	CO3				
IV	Elements of IIoT: Hardware Components- Computing (Arduino, Raspberry Pi), Communication, Sensing, Actuation, I/O interfaces. Software Components- Programming API's (using	CO3				

	Python/Node.js/Arduino) for Communication Protocols-MQTT, ZigBee, Bluetooth, CoAP, UDP, TCP.	
V	IIoT Application Development : Solution framework for IoT applications- Implementation of Device integration, Data acquisition and integration, Device data storage- Unstructured data storage on cloud/local server, Authentication, authorization of devices. Case Studies: IoT case studies and mini projects based on Industrial automation, Transportation, Agriculture, Healthcare, Home Automation.	CO 4

Learning Resources

Text Books

- 1. Introduction to Industrial Internet of Things and Industry 4.0, Sudip Misra, Chandana Roy, Anandarup Mukherjee, CRC Press, 2020.
- 2. A Hands on Approach", Vijay Madisetti, Arshdeep Bahga, Ïnternet of Things, UniversityPress, 2009.
- 3. Introduction to Internet of Things: A practical Approach", Dr. SRN Reddy, Rachit Thukraland Manasi Mishra, ETI Labs,2010

Reference Books

- 1. Internet of Things: Architecture and Design, Raj Kamal, McGraw Hill., 2005.
- 2. Getting Started with the Internet of Things, Cuno Pfister, O Reilly Media, 2007

E- Resources & other digital material

1.https://onlinecourses.nptel.ac.in/noc21_cs17/preview

Course Code	20CE5701A	Year	IV	Semester(s)	Ι
Course Category	Minor in Civil Engineering	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	20BS1101- Calculus and Linear Algebra 20BS1104-
					Applied Physics
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

BASIC SURVEYING

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Measure the land area by chaining, compass and plane table. (L3)				
CO2	Measure the elevation of points using dumpy level and illustrate various methods of contouring. (L3)				
CO3	Measure the height and distance by theodolite and know about the application of tacheometric surveying (L3)				
CO4	Illustrate the various methods of curve setting in the field and evaluate areas, volumes (L4)				
CO5	Know the Principles of triangulation survey and precisely measure horizontal/vertical distances using advanced instrument. (L3)				

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	2		2	2	2		2	2	2
CO2	2	2	2	2	2	3		3	3	3		3	2	3
CO3	3	3	3	3	3	2		2	2	2		2	3	2
CO4	2	2	2	2	2	3		3	3	3		3	2	3
CO5	2	2	2	2	2	2		2	2	2		2	2	2

SYLLABUS					
Unit	Contents				
No.		CO			
I	Chain Surveying: Surveying objectives, linear measurements, instruments for surveying, preparation of map and plan, measurement of distance, chain surveying principles, offsets, chain surveying instruments, traverses with a chain, problems on obstacles of chain surveying. Compass Surveying: Types of compass, meridians and bearings, local attraction, magnetic	CO1			

	declination, measurement of directions and angles traversing with a compass, plotting of traverse, adjustment of closing error.					
	Plane Table Surveying:					
	Principle and instruments used in plane table surveying, working					
	operations methods of plane table surveying					
	Levelling and Contouring:					
II	Instruments for levelling, principle and classification of levelling, bench					
	marks, height(level) computations, longitudinal and cross-sectional					
	levelling, problems on levelling.					
	Contours, characteristics of contours, contours of natural features, methods					
	of contouring.					
	I neodolite Surveying:					
ш	Theodolite component parts, classification, theodolite observations,					
	principle of theodolitesurvey, traverse computations, practical problems.					
	Principle of tacheometry methods of tacheometry tacheometry as					
	applied to subtensemeasurement, field work for tacheometric surveying,					
	errors.					
	Curve Setting: Types of curves, elements of a curve, setting out a					
	simple curve, settingout a compound curve, reverse curve, transition					
IV	curves.					
	Construction Surveys:					
	Setting out of buildings, computation of areas, earthwork					
	Triangulation Surveying.					
	Base of the object accessible base of an inclined object accessible					
	reduced level of the elevated points with inaccessible bases instrument					
v	axes at different levels, principle of triangulation, purpose and					
v	classification of triangulation surveys, layout of triangulation					
	Total Station & GIS:					
	EDM instruments, Total Station, Global Positioning System, GIS					

Learning Resources

- 1. B.C. Punmia, A.K. Jain, Arun Jain, Surveying I and II, 16/e, LakshmiPublications, 2017.
- 2. R. Subramanian, Surveying and Levelling, 2/e, Oxford UniversityPress,2014.
- 3. D.G Charles, R.W. Paul, Elementary Surveying: An Introduction toGeomatics, 15/e, Prentice Hall,2018

Reference Books

Text Books

- 1. S.K. Roy, Fundamentals of Surveying, 2/e, Prentice Hall of India, 2011.
- 2. T.P. Kanetkar, Surveying and Levelling, Part I and II, 4/e, New CentralBook Agency2012.

E- Resources & other digital material

- 1. https://nptel.ac.in/courses/105107122/
- 2. http://jntuk-coeerd.in/

ANNEXURE

COMMUNITY SERVICE PROJECT

Experimental learning through community engagement as per the decision of the concerned department BoS.

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- To sensitize the students to the living conditions of the people who are around them,
- To help students to realize the stark realities of the society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- To help students to initiate developmental activities in the community in coordination with public and government authorities.
- To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in a minimum of **180 hours** for the Community Service Project during the summer vacation.
- Each class/section should be assigned with a mentor.
- Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to

different sections of people like - youth, women, house-wives, etc

- A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded.
- The log book has to be countersigned by the concerned mentor/faculty incharge.
- Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- The final evaluation to be reflected in the grade memo of the student.
- The Community Service Project should be different from the regular programmes of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.
- The Community Service Project is a twofold one-
 - First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers; rather, it could be another primary source of data.
 - Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like-
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law &Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES

BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- Positive impact on students' academic learning
- Improves students' ability to apply what they have learned in "the real world"
- Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development
- Improved ability to understand complexity and ambiguity

Personal Outcomes

- Greater sense of personal efficacy, personal identity, spiritual growth, and moral development
- Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- Reduced stereotypes and greater inter-cultural understanding
- Improved social responsibility and citizenship skills
- Greater involvement in community service after graduation

Career Development

- Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- Stronger relationships with faculty
- Greater satisfaction with college
- Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- Satisfaction with the quality of student learning
- New avenues for research and publication via new relationships between faculty and community
- Providing networking opportunities with engaged faculty in other disciplines or institutions
- A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- Improved institutional commitment
- Improved student retention

• Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- Satisfaction with student participation
- Valuable human resources needed to achieve community goals
- New energy, enthusiasm and perspectives applied to community work
- Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following is the recommended list of projects for engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programmes
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aquaculture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programmes and their impact
- 24. Use of chemicals on fruits and vegetables

- 25. Organic farming
- 26. Corporation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilisation of free electricity to farmers and related issues
- 40. Gender ration in schooling level-observation.

Complementing the community service project the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programmes are;

Programmes for School Children

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programmes for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Womens' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water

- 5. ODF awareness camp
- 6. Swatch Bharath
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programmes on Environment
- 10. Health and Hygiene
- 11. Hand wash programmes
- 12. Commemoration and Celebration of important days

Programmes for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programmes

- 1. Awareness on RTI
- 2. Health intervention programmes
- 3. Yoga
- 4. Tree plantation
- 5. Programmes in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture
 - vi. Fisheries
 - vii. Sericulture
 - viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law &Order
 - xii. Excise and Prohibition
 - xiii. Mines and Geology
 - xiv. Energy

Role of Students:

- Students may not have the expertise to conduct all the programmes on their own. The students then can play a facilitator role.
- For conducting special camps like Health related, they will be coordinating with the

Governmental agencies.

- As and when required the College faculty themselves act as Resource Persons.
- Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- Asurveyformbasedonthetypeofhabitationtobepreparedbeforevisitingthehabitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secretariats could be aligned for the survey.

2. Community Awareness Campaigns (Two Weeks)

• Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Four Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks work to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University. Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.