ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LAB

Course Code	23ME3652	Year	III	Semester	II
Course	Professional Core	Branch	ME	Course Type	Theory
Category				J F	
Credits	1.5	L-T-P	0-0-3	Prerequisites	nil
Continuous		Semester			
Internal	30	End	70	Total Marks:	100
Evaluation:		Evaluation:			

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	expt
CO1	Describe the functionality and purpose of various Python libraries commonly used in machine learning	L2	1,2
CO2	Apply programming skills to implement regression methods using Python	L3	3,4,5
CO3	Develop Python code for various types of neural networks, such as Feedforward, CNN, and RNN	L3	6,7,8
CO4	Implement machine learning algorithms like Decision Tree, Naïve Bayes, and SVM using Python	L3	9,10,11
CO5	Analyze and evaluate the performance of autoencoders through implementation and result	L4	12

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO 1	3	2	1		2						1	3	2
CO 2	3	2	1		2						1	3	2
CO 3	3	2	1		2						1	3	2
CO 4	3	2	1		2						1	3	2
CO 5	3	2	1		2						1	3	2

	Syllabus					
Unit	Contents					
1	Learning of Python libraries – Numpy, Pandas, Matplotlib, Seaborn and TensorFlow	CO1				
2	2 Numerical examples on Python libraries					
3	Data Preprocessing and data cleaning using Python	CO2				
4	Write a program for Linear regression	CO2				
5	Write a program for Logistic regression	CO2				

6	Write a program for ANN	CO3
7	Write a program for CNN	CO3
8	Write a program for RNN	CO3
9	Write a program to build a Decision tree	CO4
10	Write a program to build a Naïve Bayes classifier	CO4
11	Write a program for SVM	CO4
12	Write a program for Auto-encoder	CO5

Learning Resources

Textbook(s):

- 1. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2/e, Pearson Education, 2010.
- 2. Tom M. Mitchell, Machine Learning, McGraw Hill, 2013.

References:

- 3. Ethem Alpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, 2004
- 4. Elaine Rich, Kevin Knight and Shivashankar B. Nair, Artificial Intelligence, 3/e, McGraw Hill Education, 2008
- 5. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems, PHI Learning, 2012.

Online Learning Resources:

Note: Databases can be taken from https://www.kaggle.com/datasets

Course coordinator HOD