ARTIFICIALINTELLIGENCE&MACHINE LEARNING

Course Code	23ME3602	Year	III	Semester	II	
Course	Professional Core	Branch	ME	Course Type	Theory	
Category	Troressionar Core	Dranen	IVIL	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	nil	
Continuous		Semester				
Internal	30	End	70	Total Marks:	100	
Evaluation:		Evaluation:			L	

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Explain the basic concepts of artificial intelligence	L2	1
CO2	Learn about the principles of supervised learning methods	L2	2
CO3	Gain knowledge in unsupervised learning method and Bayesian algorithms	L3	3
CO4	Get knowledge about neural networks and genetic algorithms	L3	4
CO5	Understand the machine learning analytics and apply deep learning techniques	L3	5

Contribution of Course outcomes towards achievement of programme outcomes &Strength of correlations(High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO 1	3	2	1		2						1	3	2
CO 2	3	2	1		2						1	3	2
CO 3	3	2	1		2						1	3	2
CO 4	3	2	1		2						1	3	2
CO 5	3	2	1		2						1	3	2

Syllabus						
Unit	Contents					
		СО				
I	Introduction: Definition of Artificial Intelligence, Evolution, Need, and applications in real world. Intelligent Agents, Agents and Environments; Good Behaviour - concept of rationality, the nature of environments, structure of agents.	CO1				
	Knowledge-Representation and Reasoning: Logical Agents: Knowledge-					
	based agents, the Wumpus world, logic. Patterns in Propositional Logic, Inference in First-Order Logic-Propositional vs first order inference,					

	unification.	
II	Introduction to Machine Learning (ML): Definition, Evolution, Need, applications of ML in industry and real-world, regression and classification problems, performance metrics, differences between supervised and unsupervised learning paradigms, bias, variance, overfitting and under fitting. Supervised Learning: Linear regression, logistic regression, Distance-based methods, Nearest-Neighbours, Decision Trees, Support Vector Machines, Nonlinearity and Kernel Methods.	CO2
III	Unsupervised Learning: Clustering, K-means, Dimensionality Reduction, PCA and Kernel. Bayesian and Computational Learning: Bayes theorem, concept learning, maximum likelihood of normal, binomial, exponential, and Poisson distributions, minimum description length principle, Naïve Bayes Classifier, Instance-based Learning- K-Nearest neighbour learning.	CO3
IV	Neural Networks and Genetic Algorithms: Neural network representation, problems, perception, multilayer networks and backpropagation, steepest descent method, Convolutional neural networks and their applications Recurrent Neural Networks and applications, Local vs Global optima, Genetic algorithms- binary coded GA, operators, convergence criteria.	CO4
V	Deep Learning: Deep generative models, Deep Boltzmann Machines, Deep auto-encoders, Applications of Deep Networks. Machine Learning Algorithm Analytics: Evaluating Machine Learning algorithms, Model, Selection, Ensemble Methods - Boosting, Bagging, and Random Forests.	CO5

Learning Resources

Textbook(s):

- 1) Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2/e, Pearson Education, 2010.
- 2) Tom M. Mitchell, Machine Learning, McGraw Hill, 2013.
- 3) Ethem Alpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, 2004.

References:

- 1) Elaine Rich, Kevin Knight and Shivashankar B. Nair, Artificial Intelligence, 3/e, McGraw Hill Education, 2008.
- 2) Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems, PHI Learning, 2012.

Online Learning Resources:

- https://www.tpointtech.com/artificial-intelligence-ai
- https://www.geeksforgeeks.org/

Course coordinator HOD