NANO TECHNOLOGY

(OPEN ELECTIVE-I)

Course code	23ME2503	Year	III	Semester	I
Course category	Open Elective-I	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Pre requisites	Material Scienceand Metallurgy, Manufacturing Processes
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes								
At the end of the course students will be able to									
CO1	Fundamental Knowledge of Nanoscience and Engineering	L2							
CO2	Understand the unique properties of nano materials	L3							
CO3	Proficiency in Nanomaterial Synthesis and Characterization	L3							
CO4	Application of Nanotechnology Across Industries	L3							

Contribution of Course Outcomes	towards	achievement	of	Program	Outcomes	& Streng	gth of
correlations(H:High (3), M:Mediur	n (2), L:L	ow (1))					

8 77						(//	` `	//					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	1	1					1	1	3	2
CO2	3	3	2	2	2		1	1		1	1	3	2
CO3	3	3	3	3	3		1	1	1	2	2	3	2
CO4	2	3	3	2	2	2	3	2	2	2	3	3	2

SYLLABUS														
Ur	nit	Contents											CO	
	INTRODUCTION: History and Scope, Classification of Nano structured Materials,											aterials,		
	Fascinating Nanostructures, and applications of nano-materials, challenges and future													
	prospects.													701
1	[[•											C	CO1
	UNIQUE PROPERTIES OF NANO MATERIALS: Microstructure and Defects											efects		
		in Nano crystalline Materials: Dislocations, Twins, stacking faults and voids, Grain												
	Boundaries, triple and disclinations. Effect of Nano-dimensions on Materials											I .		
		Behavio	or: E	lastic	prope	rties,	Melti	ing P	oint, Di	iffusivity,	Grain g	rowth		
		characteristics, enhanced solid solubility. Magnetic Properties: Soft magnetic								gnetic	CO :	1 002		
I	T	nanocrystalline alloy, Permanent magnetic nanocrystalline materials, Giant								Giant	CO	1,CO2		
1		Magneti	ic Res	onance	, Elect	rical P	ropert	ies, Op	otical Pro	perties, Tl	hermal Prop	erties		
		and Med	chanic	al Prop	erties.		-				_			
	ļ	SYNTH	ESIS	ROUT	ES: E	ottom-	up ap	proach	es: Physi	ical Vapor	r Deposition	n, Inert		
	(Gas Cor	ndensa	tion, L	aser A	Ablation	n, Cho	emical	Vapor I	Deposition	, Molecular	r Beam		
	-	Epitaxy,	Sol-go	el meth	od, Se	elf-asse	mbly.	Top-do	wn appro	oaches: M	echanical al	lloying,		
l II	T .	Nano-lithography. Consolidation of Nano powders: Shock wave consolidation, Hot									on, Hot	CO	1,CO3	
		so-static	press	ing and	l Cold	iso-stat	tic pre	ssing,	Spark pla	sma sinter	ring.			

PVPSIT Department of Mechanical Engineering B-TECH III-IST SEM PVP23

Г	TOOLS TO CHARACTERIZE NANOMATERIALS: X-Ray Diffraction (XRD), Small Angle X-ray scattering, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Scanning Tunneling Microscope (STM), Field Ion Microscope (FEM), Three-dimensional Atom Probe (3DAP), Nano indentation.	G01 G03
V	APPLICATIONS OF NANO MATERIALS: Nano-electronics, Micro- and Nano-electromechanical systems (MEMS/NEMS), Nano sensors, Nano catalysts, Food and Agricultural Industry, Cosmetic and Consumer Goods, Structure and Engineering, Automotive Industry, Water- Treatment and the environment, Nano-medical applications, Textiles, Paints, Energy, Defense and Space Applications, Concerns and challenges of Nanotechnology	CO1, CO4

Learning Resource

TEXT BOOKS:

- 1. Introduction to Nano Technology by Charles. P. Poole Jr& Frank J. Owens. Wiley India Pvt. Ltd.
- 2. Nano Materials- A.K.Bandyopadhyay/ New Age Publishers.
- 3. Nano Essentials- T.Pradeep/TMH

Referencebooks

- 1. 1. Solid State physics by Pillai, Wiley Eastern Ltd.
- 2. Introduction to solid state physics 7th edition by Kittel. John Wiley & sons (Asia) Pvt Ltd.

E-Resources & otherdigitalMaterial:

- 4. nanoyou.eu.
- 5. Nanotechnology, Science and Applications Course
- 6. Coursera Nanotechnology
- 7. MIT xPRO | Nanotechnology: Applications and Opportunities