Course Code	23BS1201	Year	I Semester		II	
Course Category	Basic Science	Branch	ME	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Pre- requisites	NIL	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (Common to all branches)

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Interpret the basic concepts of differential equations and vector calculus (L2).					
CO2	Apply different methods to solve ordinary differential equations and partial differential equations, L-C-R Circuit problems (L3).					
CO3	Apply the differential operator to calculate the divergence and flux of vector point functions (L3).					
CO4	Analyze the given ordinary differential equation and partial differential equation to find the solution (L4).					
CO5	Analyze the given data to find work done, flux using line and surface integrals, areas and volumes using vector integral theorems (L4).					

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)										n of			
	PO1	PO2	PO3	PO4	PO 5					POÍ 0	PO11	PO1 2	PSO1	PSO 2
CO1	2												1	
CO2	3												1	
CO3	3												1	
CO4		3							1	1			1	
CO5		3							1	1			1	

	SYLLABUS				
Unit No.	Contents	Mapped CO			
Ι	IDifferential equations of first order and first degreeLinear differential equations – Bernoulli's equations- Exact equations and equations reducible to exact form. Applications: Newton's Law of cooling – Law of natural growth and decay.				
II	Linear differential equations of higher order(Constant Coefficients) Definitions, complementary function, general solution, particular integral, Wronskian, Method of variation of parameters. Applications to L-C-R Circuit problems.	CO1,CO2, CO4			
III	Partial Differential Equations Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients.	CO1,CO2, CO4			
IV	Vector differentiation Scalar and vector point functions, vector operator Del, Del applies to scalar point functions- Gradient, Directional derivative, del applied to vector point functions-Divergence and Curl.	CO1,CO3, CO5			
V	Vector integration Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and related problems.	CO1,CO3, CO5			
	Learning Resources	I			
1. H 44 K	Books: igher Engineering Mathematics, B.S. Grewal, Khanna Publishers, 2017, Ith Edition. 2.Advanced Engineering Mathematics, Erwin reyszig,JohnWiley&Sons,2018,10th Edition				
1. The 14 ^{tt}	rence Books: omas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Pub ^a Edition.				
2. Adv 201	vanced Engineering Mathematics, Dennis G. Zill and Warren S. Wright, Jones an 8.	nd Bartlett,			
3. Adv 4. Adv Scie	vanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018 vanced Engineering Mathematics, R.K.Jain and S.R.K.Iyengar, Alpha ence International Ltd., 2021 5 th Edition (9th reprint).	8, 5 th Edition.			
	her Engineering Mathematics, B.V.Ramana, Mc Graw Hill Education, 2017 ources:				
1. <u>https</u> 2. <u>https</u>	ources: ://nptel.ac.in/courses/111/105/111105121/ ://nptel.ac.in/courses/111/105/111105122/ s://nptel.ac.in/courses/111/107/111107108/				