Computer Programming Lab (Common to all Branches)

Course Code	23ES1152	Year	I	Semester	I
Course Category	ngineering Sciences	Branch	ME	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Basic Mathematics
Continuous Internal Evaluation:	30	Semester End Exam:	70	Total Marks:	100

Course Outcomes					
Upon suc	Upon successful completion of the course, the student will be able to				
CO1	CO1 Apply C programming language constructs to solve the given problem				
CO2	Implement programs as an individual on different IDE's/ online	L3			
	platforms.				
CO3	Develop an effective report based on various programs implemented.	L3			
CO4	Apply technical knowledge for a given problem and express it with effective oral	L3			
	communication.				
CO5	Analyze outputs using given constraints/test cases.	L4			

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	2				1									
CO3										3				
CO4										3				
CO5		3										1		

	Syllabus	
Expt. No.	Contents	MappedCO
I	WEEK 1 Objective: Getting familiar with the programming environment on the computer and writing the first program. Suggested Experiments/Activities:	CO1,CO2,CO3
	Tutorial 1: Problem-solving using Computers. Lab1: Familiarization with programming environment Basic Linux environment and its editors like Vi, Vim & Emacs etc. Exposure to Turbo C, gcc	CO4,CO5
	Writing simple programs using printf(), scanf()	
	WEEK 2 Objective: Getting familiar with how to formally describe a solution to a problem in a series of finite steps both using textual notation and graphic notation.	
II	Suggested Experiments /Activities: Tutorial 2: Problem-solving using Algorithms and Flow charts. Lab 1: Converting algorithms/flow charts into C Source code. Developing the algorithms/flowcharts for the following sample programs Sum and average of 3 numbers Conversion of Fahrenheit to Celsius and vice versa Simple interest calculation	CO1,CO2,CO3 CO4,CO5
III	WEEK 3 Objective: Learn how to define variables with the desired datatype, initialize them with appropriate values and how arithmetic operators can be used with variables and constants. Suggested Experiments/Activities: Tutorial 3: Variable types and type conversions: Lab 3: Simple computational problems using arithmetic expressions. Finding the square root of a given number	
	Finding compound interest Area of a triangle using heron's formulae Distance travelled by an object	
IV	WEEK 4 Objective: Explore the full scope of expressions, type-compatibility of variables & constants and operators used in the expression and how operator precedence works. Suggested Experiments/Activities: Tutorial4: Operators and the precedence and as associativity: Lab4: Simple computational problems using the operator' precedence and associativity	CO1,CO2,CO3 CO4,CO5
	 i) Evaluate the following expressions. a. A+B*C+(D*E) + F*G 	

	b. A/B*C-B+A*D/3	
	c. A+++BA	
	d. $J = (i++) + (++i)$	
	Find the maximum of three numbers using conditional operator	
	Take marks of 5 subjects in integers, and find the total, average in float	
	WEEK 5	
V	Objective: Explore the full scope of different variants of "if construct" namely if-else, null- else, if-else if*-else, switch and nested-if including in what scenario each one of them can be used and how to use them. Explore all relational and logical operators while writing conditionals for "if construct". Suggested Experiments/Activities: Tutorial 5: Branching and logical expressions: Lab 5: Problems involving if-then-else structures. Write a C program to find the max and min of four numbers using if-else.	CO1,CO2,CO3 CO4,CO5
	Write a C program to generate electricity bill.	
	Find the roots of the quadratic equation.	
	Write a C program to simulate a calculator using switch case.	
	Write a C program to find the given year is a leap year or not.	
	WEEK 6	
VI	do-while loop and for loop in addition to structured jump constructs like break and continue including when each of these statements is more appropriate to use. Suggested Experiments/Activities: Tutorial 6: Loops, while and for loops Lab 6: Iterative problems e.g., the sum of series Find the factorial of given number using any loop. Find the given number is a prime or not. Compute sine and cos series Checking a number palindrome Construct a pyramid of numbers. WEEK 7:	CO1,CO2,CO3 CO4,CO5
VII	Objective: Explore the full scope of Arrays construct namely defining and initializing 1-D and 2-D and more generically n-D arrays and referencing individual array elements from the defined array. Using integer 1-D arrays, explore search solution linear search. Suggested Experiments/Activities: Tutorial 7: 1 D Arrays: searching. Lab 7:1D Array manipulation, linear search Find the min and max of a 1-D integer array.	CO1,CO2,CO3 CO4,CO5
	Perform linear search on 1D array. The reverse of a 1D integer array Find 2's complement of the given binary number. Eliminate duplicate elements in an array.	
	The reverse of a 1D integer array	CO1,CO2,CO

	Objective: Explore the difference between other arrays and character arrays	
	that can be used as Strings by using null character and get comfortable with	
	string by doing experiments that will reverse a string and concatenate two	
VIII	strings. Explore sorting solution bubble sort using integer arrays. Suggested Experiments/Activities:	
V 111	Tutorial 8: 2 D arrays, sorting and Strings.	
	Lab 8: Matrix problems, String operations, Bubble sort	
	i) Addition of two matrices	
	ii) Multiplication two matrices	
	iii) Sort array elements using bubble sort	
	iv) Concatenate two strings without built-in functions	
	v) Reverse a string using built-in and without built-in string functions	
	WEEK 9:	
IX	Objective: Explore pointers to manage a dynamic array of integers, including memory allocation & Eamp; value initialization, resizing changing and reordering the contents of an array and memory de-allocation using malloc (), calloc (), realloc () and free () functions. Gain experience processing command-line arguments received by C	
	Suggested Experiments/Activities:	CO1,CO2,CO
	Tutorial 9: Pointers, structures and dynamic memory allocation	CO4,CO5
	Lab 9: Pointers and structures, memory dereference.	
	i) Write a C program to find the sum of a 1D array using malloc()	
	ii) Write a C program to find the total, average of n students using structures	
	iii)Enter n students data using calloc() and display failed students list	
	iv)Read student name and marks from the command line and display the	
	student details along with the total.	
	v) Write a C program to implement realloc()	
	WEEK 10: Objective: Experiment with C Structures, Unions, bit fields and self	
	Objective: Experiment with C Structures, Unions, bit fields and self-referential structures (Singly linked lists) and nested structures Suggested	
	Experiments/Activities:	
	Tutorial 10: Bitfields, Self-Referential Structures, Linked lists	
X	Lab10: Bitfields, linked lists	CO1,CO2,CC
	Read and print a date using dd/mm/yyyy format using bit-fields and	CO4,CO5
	differentiate the same without using bit-fields	
	i) Create and display a singly linked list using self-referential structure.ii) Demonstrate the differences between structures and unions using a C	
	program. iii)Write a C program to shift/rotate using bitfields.	
	Write a C program to smit/rotate using bitnerds. Write a C program to copy one structure variable to another structure of the	
	same type	
	· · ·	CO1,CO2,CC
	WEEK 11.	1001,002,00

XI	doing some experiments by parameter passing using call by value. Basic methods of numerical integration			
211	Suggested Experiments/Activities:			
	Tutorial 11: Functions, call by value, scope and extent,			
	Lab 11: Simple functions using call by value, solving differential equations			
	using Eulers theorem.			
	i) Write a C function to calculate NCR value.			
	ii) Write a C function to find the length of a string.			
	iii)Write a C function to transpose of a matrix.			
	iv)Write a C function to demonstrate numerical integration of differential			
	equations using Euler's method.			
	WEEK 12:			
	Objective: Explore how recursive solutions can be programmed by writing			
	recursive functions that can be invoked from the main by programming at-least			
XII	five distinct problems that have naturally recursive solutions.			
	Suggested Experiments/Activities:	CO1,CO2,CO3,		
	Tutorial 12: Recursion, the structure of recursive calls Lab 12: Recursive	CO4,CO5		
	functions			
	i) Write a recursive function to generate Fibonacci series.			
	ii) Write a recursive function to find the lcm of two numbers.			
	iii) Write a recursive function to find the factorial of a number.			
	iv) Write a C Program to implement Ackermann function using recursion.			
	v) Write a recursive function to find the sum of series.			
	WEEK 13:			
	Objective: Explore the basic difference between normal and pointer variables,			
	Arithmetic operations using pointers and passing variables to functions using			
	pointers Suggested Experiments/Activities:			
	Tutorial 13: Call by reference, dangling pointers			
XIII	Lab 13: Simple functions using Call by reference, Dangling pointers.			
	Write a C program to swap two numbers using call by reference.	004 005 05		
	Demonstrate Dangling pointer problem using a C program.	CO1,CO2,CO3,		
	Write a C program to copy one string into another using pointer.	CO4,CO5		
	iv) Write a C program to find no of lowercase, uppercase, digits and other			
	characters using pointers.			
	WEEK14:			
	Objective: To understand data files and file handling with various file I/O			
	functions. Explore the differences between text and binary files.			
	Suggested Experiments/Activities:	CO1,CO2,CO3,		
****	Tutorial 14: File handling Lab 14: File operations	CO4,CO5		
XIV	Write a C program to write and read text into a file.			
	ii) Write a C program to write and read text into a binary file using fread() and			
	fwrite()			
	iii)Copy the contents of one file to another file.			
	iv)Write a C program to merge two files into the third file using command-line			
	arguments.			
	v) Find no. of lines, words and characters in a file			

Learning Resources

Text Books

- 1. Ajay Mittal, Programming in C: A practical approach, Pearson.
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw Hill

Reference Books

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice- Hall of India
- 2. C Programming, A Problem-Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE

e- Resources & other digital material

- 1. https://www.geeksforgeeks.org/c-programming-language/
- 2. https://www.greatlearning.in/academy/learn-for-free/courses/c-programming
- 3. https://onlinecourses.nptel.ac.in/noc22_cs101/course