ENGINEERING PHYSICS LAB

Course Code	23BS1152	Year	I	Semester	I
Course Category	Basic Science	Branch	ME	Course Type	Lab
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Identify the type of semiconductor using Hall effect and measure the thermal resistivity, energy band gap [L3].						
CO2	Apply resonance to estimate the frequency of a tuning fork and verify laws of a stretched string [L3] .						
CO3	Examine the optical, elastic, and dielectric properties of the given materials. [L4].						
CO4	Assess s the intensity of the magnetic field of circular coil carrying current with distance and measure resistance using four probe method [L4]						
CO5	Summarize and tabulate the experimental observations and output.						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2
CO 1	3			3								3	1	1
CO 2	3			3								3	1	1
CO 3	3			3								3	1	1
CO 4	3			3								3	1	1
CO 5									3	3		3	1	1

Exp.No.	Contents					
		CO				
1	Determination of dielectric constant of the various solid samples	CO3,CO5				
2	Determination of wavelength of Laser light using diffraction grating.	CO3,CO5				
3	Determination of the resistivity of semiconductors by four probe methods	CO4,CO5				
4	Determination of energy gap of a semiconductor using p-n junction diode	CO1,CO5				
5	Magnetic field along the axis of a current carrying circular coil by StewartGee's Method	CO4,CO5				
6	Determination of Hall voltage and Hall coefficient of a given semiconductor	CO1,CO5				
	using Hall effect					
7	Determination of temperature coefficients of a thermistor.	CO1,CO5				

8	Determination of rigidity modulus of the material of the given wire using	CO3,CO5
	Torsional pendulum	
9	To verify the laws of transverse vibrations of a string using Sonometer.	CO2,CO5
10		CO2,CO5
	experiment	

Learning Resources

References:

• A Textbook of Practical Physics-S.Balasubramanian, M.N.Srinivasan, S.Chand Publishers, 2017

WebResources

- www.vlab.co.in
- https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype