LINEAR ALGEBRA & CALCULUS

Course Code	23BS1101	Year	I	Semester	I	
Course Category	Basic Science	Branch	ME	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	NIL	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	CO1 Interpret the basic concepts of Linear algebra and Calculus.(L2)					
CO2	Apply the echelon form to obtain the solution of system of linear equations and eigen					
	vectors of a matrix.(L3)					
CO3	Apply the concepts of calculus to find the series expansion and extremum of a given					
	function, area enclosed by plane curves and volume of the solids.(L3)					
CO4	Analyse the solution set of linear system of equations and nature of the quadratic forms.					
	(L4)					
CO5	Analyse the behavior of functions using mean value theorems, extremum of the given					
	function and limits of integration for functions of several variables.(L4)					
CO6	Submit a report by solving the given problems using the concepts of Linear					
	algebra and Calculus.					

Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium,														
1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	2												1	
CO2	3												1	
CO3	3												1	
CO4		3											1	
CO5		3											1	
CO6									3	3		3	1	

	SYLLABUS					
Unit	t Contents					
No.		CO				
I	Matrices	CO1,				
1	Rank of a matrix by echelon form, normal form. Cauchy–Binet formulae (without	CO2,				
	proof).Inverse of Non- singular matrices by Gauss-Jordan method, System of	CO4, CO6				
	linear equations: Solving system of Homogeneous and Non-Homogeneous					
	equations by Gauss elimination method, Jacobi and Gauss Seidel Iteration					
	Methods.	CO1,				
l II	II Eigen values, Eigen vectors and Orthogonal Transformation					
	Eigen values, Eigen vectors and their properties, Diagonalization of a matrix,	CO2,				
	Cayley-Hamilton Theorem(without proof), finding inverse and power of a matrix	CO4,				
	by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic	CO6				
	Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.					
	Calculus	CO1,				
III	Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem with their	*				
	geometrical interpretation, Cauchy's mean value theorem, Taylor's and Maclaurin					
	theorems with remainders (without proof), Problems and applications on the above					
	theorems.					
IV	Partial differentiation and Applications (Multivariable calculus)	CO1,				
1 V	Functions of several variables: Continuity and Differentiability, Partial derivatives,	CO3,				
	total derivatives, chain rule, Taylor's and Maclaurin's series expansion of functions					
	of two variables. Jacobians, Functional dependence, maxima and minima of functions	CO6				
	of two variables, method of Lagrange multipliers.					
V	Multiple Integrals (Multi variable Calculus)	CO1,				
,	Double integrals, triple integrals, change of order of integration, change of	CO3,				
	variables to polar, cylindrical and spherical coordinates. Finding areas (by double	CO5,				
	integrals) and volumes (by double integrals and triple integrals).	CO6				

Learning Resources

Text Books:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna Publishers, 2017, 44th Edition
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 2018,10 th Edition.

Reference Books:

- 1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publishers, 2018, 14th Edition.
- 2. Advanced Engineering Mathematics, R.K.Jain and S. R.K.Iyengar, Alpha Science International Ltd., 2021 5th Edition (9threprint).
- 3. Advanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018, 5th Edition.
- 4. Advanced Engineering Mathematics, Micheael Greenberg, Pearson publishers, 9th edition
- 5. Higher Engineering Mathematics, H.K Das, Er.Rajnish Verma, S.Chand Publications, 2014, Third Edition (Reprint2021).

E-Resources:

- **1.** https://nptel.ac.in/courses/111/108/111108157/
- 2. https://youtu.be/xDSejIvZmg4
- 3. https://nptel.ac.in/courses/111104125