DATA STRUCTURES LAB (For CSE, IT, CSE-AI&ML, CSE-DS)

Course Code:	23IT3251	Year:	Ι	Semester:	II		
Course Category:	Professiona 1 Core	Branch:	ranch: IT Course Type:		Practical		
Credits:	1.5	L-T-P:	0-0-3	Prerequisites:	Computer Programming Lab		
Continuou s Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100		

	COURSE OUTCOMES						
Upon su	Upon successful completion of the course, Student will be able to:						
C01	Apply Linear and non-linear data structures for solving problems.	L3					
CO2	Implement programs as an individual on different IDEs	L3					
CO3	Develop an effective report based on various programs implemented	L3					
CO4	Apply technical knowledge for a given problem and express with an effective oral communication	L3					
CO5	Analyze outputs using given constraints/test cases	L4					

Сог	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
			corr	elation	ns (3: §	Substa	ntial, 2	2: Mod	lerate,	1: Slig	ht)			
	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO1	PSO2
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3												1	
CO2	2				1									
CO3										3				
CO4										3				
CO5		3										2	1	

	Syllabus	
Unit No.	Contents	Mapped CO
1.	Exercise 1: Array Manipulation i) Write a program to reverse an array. ii) C Programs to implement the Searching Techniques – Linear & Binary Search	CO1,CO2,CO 3, CO4,CO5
2.	Exercise 2: Sorting i) C Programs to implement Sorting Techniques – Bubble sort, Selection sort and Insertion Sort	CO1,CO2,CO 3, CO4,CO5
3.	 Exercise 3: Linked List Implementation i) Implement a singly linked list and perform insertion anddeletion operations. ii) Develop a program to reverse a linked list iteratively andrecursively. iii) Find minimum and maximum elements in a linked list. 	CO1,CO2,CO 3, CO4,CO5
4.	 Exercise 4: Linked List Applications i) Implement a linked list to represent polynomials and perform addition. ii) Develop a program to append one linked list to the end of the other. iii) Implement a circular linked list and perform insertion anddeletion and traversal. 	CO1,CO2,CO 3, CO4,CO5
5.	Exercise 5: Double Linked List Implementation i) Implement a doubly linked list and perform insertion, deletion, operations.	CO1,CO2,CO 3, CO4,CO5
6.	Exercise 6: Stack Operations i) Implement a stack using arrays and linked lists. ii) Write a program to evaluate a postfix expression using a stack. iii) Implement a program to check for balanced parentheses using a stack.	CO1,CO2,CO 3, CO4,CO5
7.	Exercise 7: Queue Operations i) Implement a queue using arrays and linked lists. ii) Implement acircular queue and perform insertion and deletion operations.	CO1,CO2,CO 3, CO4,CO5
8.	Exercise 8: Stack and Queue Applicationsi) Use a stack to evaluate an infix expression and convert it to postfix.ii) Create a program to determine whether a given string is a palindrome or not.	CO1,CO2,CO 3, CO4,CO5
9.	Exercise 9: Binary Search Tree i) Implementing a BST using Linked List. ii)Traversing of BST.	CO1,CO2,CO 3, CO4,CO5
10.	Exercise 10: Hashing i) Implement a hash table with collision resolution techniques.	CO1,CO2,CO 3, CO4,CO5

L	earning Resources
Т	ext Books
1.	Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition, 2002, Pearson.
2.	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
	CliffordStein, Third Edition, 2010, PHI.
3.	Data Structures and Algorithms Made Easy by Narasimha
	Karumanchi,2020,CareerMonk Publications.
4.	AndersonFreed, Silicon Press, 2008
Re	ferences
1.	Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders
2.	C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E.
	Hopcroft
3.	Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum
4.	Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L.
	Rivest, and Clifford Stein
5.	Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching,
	and Graph Algorithms by Robert Sedgewick.
e-	Resources & other digital material
1.	https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
2.	http://www.algomation.com/algorithm/single-linked-list-insert-delete
3.	http://www.algomation.com/algorithm/binary-tree-insert-delete-display
4.	https://www.youtube.com/watch?v=AfYqN3fGapc

- 5. <u>https://www.youtube.com/watch?v=7vw2iIdqHIM</u>
- 6. <u>http://littlesvr.ca/dsa-html5-animations/sorting.php</u>