Data Structures (For CSE, IT, CSE-AI&ML, CSE-DS)

Course Code:	23IT3201	Year:	I	Semester:	II
Course Category:	Professional Core	Branch:	IT	Course Type:	Theory
Credits:	3	L-T-P:	3-0-0	Prerequisite s:	Introduction to Programming
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	COURSE OUTCOMES					
Upon s	Upon successful completion of the course, Student will be able to:					
CO 1	Describe different linear and non-linear data structures	L2				
CO 2	Make use of linear data structures to implement searching, sorting algorithms.	L3				
CO 3	Apply suitable linear and nonlinear data structures to solve the various problems	L3				
CO 4	Analyze suitable data structures to solve various problems	L4				

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)												
	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 1 90 PO 1 1 PO1 2 PSO1 PSO2												
CO1	1												
CO2	2											2	
CO3	3												
CO4		2									2	1	

Unit No.	COURSE CONTENTS					
UNIT- 1	Introduction to Linear Data Structures: Definition and importance of linear data structures, Abstract data types (ADTs) and their implementation, Overview of time and space complexity analysis. Searching Techniques: Linear & Binary Search Sorting Techniques: Bubble sort, Selection sort, Insertion Sort.	CO1,CO 2				
UNIT- II	Linked Lists: Singly linked lists: representation and operations, doubly linked lists, representation and operations and circular linked lists: representation and operations, Comparing arrays and linked lists.	CO1,CO 3, CO4				
UNIT- III	Stacks: Introduction to stacks: properties and operations, implementing stacks using arrays and linked lists, Applications of stacks: infix to postfix conversion, expression evaluation, balanced parentheses.	CO1,CO 3, CO4				
UNIT-IV	Queues: Introduction to queues: properties and operations, implementing queues using arrays and linked lists Circular Queue: Introduction, representation, properties and operations on circular queue.	CO1,CO 3, CO4				
UNIT-V	Trees: Introduction to Trees, Binary Tree, Binary Search Tree – Insertion, Deletion & Traversal (Recursion Only).	CO1,CO 3,CO4				
	Hashing : Brief introduction to hashing and hash functions, Collision resolution techniques: chaining and open addressing.					

T		Dagarragag
L	earning	Resources

Text Books

- 1. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition, 2002, Pearson.
- 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, RonaldL.Rivest, Clifford Stein, Third Edition, 2010, PHI.
- 3. Data Structures and Algorithms Made Easy by Narasimha Karumanchi, 2020, Career Monk Publications.

References

- 1. Fundamental of Data Structures in C, Horowitz, Sahani, Anderson-Freed, Second Edition, 2008, Universities Press.
- 2. Classic Data Structures, Debasis Samantha, Second Edition, 2009, PHI.
- 3. Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders
- 4. C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft
- 5. Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum
- 6. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- 7. Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick

e-Resources and other Digital Material

1	httn./	000	iitkgp.	ac in	nde/
1.	$\mu \nu$.//	CSC.	mkgp.	ac.III/	pus/

- $2.\ http://cmpe.emu.edu.tr/bayram/courses/231/LectureNotesSlides/IQBAL/Lecture\%20Notes$
- 3. https://www.geeksforgeeks.org/data-structures/
- 4. https://www.programiz.com/dsa
- 5. https://www.tutorialspoint.com/data_structures_algorithms/index.htm