CHEMISTRY LAB

Course Code	23BS1251	Year	I	Semester	II
Course Category	Basic Sciences	Branch	IT	Course Type	Lab
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon su	Upon successful completion of the course, the student will be able to					
CO1	Demonstrate the working of potentiometer and conductometer instruments.					
	(L3)					
CO2	Prepare advanced materials like polymers and Nano materials (L3)					
CO3	Calculate the strength of Pb-Acid battery(L4)					
CO4	Examine the ferrous iron content in a sample using dichrometry (L4)					
CO5	Calculate the wave length of a sample by using UV-Visible Spectroscopy and colorimetry					
	(L4)					
CO6	Make an effective report based on the experiments.					

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
correlations (3:High,2: Medium, 1:Low)														
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	PO11	PO1 2	PSO 1	PSO 2
CO 1				3								3		
	3													
CO2				3								3		
	3													
CO3				3								3		
	3													
CO4				3								3		
	3													
CO5				3								3		
	3													
CO 6									3	3		3		

	Syllabus				
Exp. No.	Contents	Mapped CO			
Experiments					
1	Conductometric titration of strong acid vs strong base	CO1,CO6			
2	Conductometric titration of weak acid vs. strong base	CO1,CO6			
3	Determination of cell constant and conductance of solutions	CO1,CO6			
4	Potentiometry - determination of redox potentials and emfs	CO1, CO6			
5	Determination of Strength of an acid in Pb-Acid battery	CO3,CO6			
6	Preparation of a Bakelite	CO2,CO6			
7	Verify Lambert-Beer's law	CO5,CO6			
8	Wavelength measurement of sample through UV-Visible Spectroscopy	CO5,CO6			
9	Preparation of nanomaterials by precipitation method	CO2,CO6			
10	Estimation of Ferrous Iron by Dichrometry	CO4,CO6			

Learning Resources

Reference:

^{• &}quot;Vogel's Quantitative Chemical Analysis 6th Edition " Pearson Publications by J. Mendham, R.C.Denney, J.D.Barnes and B. Sivasankar