CHEMISTRY

Course Code	23BS1202	Year	I	Semester	II	
Course Category	Basic Sciences	Branch	IT	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Nil	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes						
Upon sı	Upon successful completion of the course, the student will be able to						
CO1	Interpret fundamental concepts of chemistry. L2						
CO 2	Apply knowledge of quantum mechanics, materials and energy sources to describe and						
	solve problems. L3						
CO3	Utilize knowledge of conducting polymers and instrumentation to design and develop						
	new materials.L3						
CO4	Analyze bonding models, Modern engineering materials, and electrochemical						
	processes to make informed decisions L4						
CO5	Assume the concept of polymers and instrumentation methods and their respective						
	applications to design and develop new products. L4						
CO6	Communicate concepts and technologies related to chemistry effectively in written						
	reports.						

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations(3:High,2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	2													
CO ₂	3													
CO ₃	3													
CO ₄		3												
CO5		3												
CO ₆									3	3		3		

	SYLLABUS					
Unit No.	Contents	Mapped CO				
I	UNIT I Structure and Bonding Models: Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ 2,particle in one dimensional box, molecular orbital theory – bonding in homo-and hetero nuclear diatomic molecules – energy level diagrams of O2 and CO etc. π -molecular orbitals of butadiene and benzene-calculation of bond order.	CO1, CO2 CO4 CO6				

II	UNIT II Modern Engineering materials Semiconductors- Introduction, basic concept, applications.	CO1, CO2					
	Super conductors-Introduction ,basic concept, applications.						
	Super capacitors- Introduction, Basic Concept, Classification and	CO6					
	Applications. Nano materials-Introduction, classification, properties and						
	applications of Fullerenes, carbon Nano tubes, Graphines and nanoparticles.						
	UNIT III Electrochemistry and Applications						
	Electrochemical cell, Nernst equation, cell potential calculations and						
	numerical problems. potentiometry- potentiometric titrations (redox titrations),						
III	concept of conductivity, conductivity cell, conduct metric titrations (acid-base						
	titrations).	CO1,					
	Electrochemical sensors – potentiometric sensors with examples,	CO2					
	amperometric sensors with examples. Primary cells - Zinc-air battery,	CO4,					
	Secondary cells – lithium-ion batteries- working of the batteries including cell	CO6					
	reactions.						
	Fuel cells- hydrogen-oxygen fuel cell– working of the cells. Polymer						
	Electrolyte Membrane Fuel cells (PEMFC).						
	UNIT IV Polymer Chemistry						
	Introduction to polymers, functionality of monomers, chain growth and step						
	growth polymerization, coordination polymerization with specific examples	CO1,					
	and mechanisms of polymer formation	CO3					
IV	Plastics –Thermo and Thermosetting plastics, Preparation, properties and	CO5,					
	applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.	CO6					
	Elastomers–Buna-S,Buna-N–preparation, properties and applications.						
	Conducting polymers – poly acetylene, poly aniline, – mechanism of						
	conduction and applications. Bio-Degradable polymers - Poly Glycolic Acid						
	(PGA), Polyl Lactic Acid (PLA).						
	UNIT V Instrumental Methods and Applications						
V	Electromagnetic spectrum- Absorption of radiation- Beer-Lambert's law. UV-	CO1,					
	Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies,	CO3,					
	fundamental modes and selection rules, Instrumentation. Chromatography-						
	Basic Principle, Classification.HPLC:Principle, Instrumentation and	CO6					
	Applications.						

Learning Resources

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, Dhanpat Rai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb. 2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

E-Resources: https://nptel.ac.in/courses/103108100

https://onlinecourses.nptel.ac.in/noc23 cy19/preview https://nptel.ac.in/courses/118104008