Course Code	23EE3201	Year	Ι	Semester	II
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

ELECTRICAL CIRCUIT ANALYSIS -I

Course Outcomes						
Upon s	successful completion of the course, the student will be able to					
CO1	Understand the basic electrical elements and different fundamental laws, transformations, concept of self-inductance and mutual inductance, phasor diagrams, resonance and network theorems.(L2)					
CO2	Apply the basics of electrical engineering to solve various electrical and magnetic circuits.(L3)					
CO3	Apply the concepts of electrical circuits to obtain various mathematical and graphical representations.(L3)					
CO4	Analyze nodal and mesh networks, series and parallel magnetic circuits, resonance circuits, Network theorems, steady state response of different circuit topologies (with R, L and C components).(L4)					
CO5	Submit a report on Electric Circuits, Magnetic circuits, Single phase circuits, Resonance, Locus diagrams, Network Theorems.					

C	Contribution of Course Outcomes towards achievement of Program Outcomes &												
			Stren	gth of	corre	lation	s (3:H	igh, 2:	: Medi	ium, 1	:Low)		
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2								PSO2				
C01													
CO2	3											3	2
CO3	3											3	2
CO4		3										3	2
CO5				3					3	3		3	2

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	INTRODUCTION TO ELECTRICAL CIRCUITS Basic Concepts of passive elements of R, L, C and their V-I relations, Sources (dependent and independent), Kirchoff's laws, Network reduction techniques (series, parallel, series - parallel, star-to-delta and delta-to-star transformation), source transformation technique, nodal analysis and mesh analysis to DC networks with dependent and independent voltage and current sources.	CO1, CO2, CO4, CO5
II	MAGNETIC CIRCUITS Basic definition of MMF, flux and reluctance, analogy between electrical and magnetic circuits, Faraday's laws of electromagnetic induction – concept of self and mutual inductance, Dot convention – coefficient of coupling and composite magnetic circuit, analysis of series and parallel magnetic circuits.	CO1, CO2, CO4, CO5

III	SINGLE PHASE CIRCUITS Characteristics of periodic functions, Average value, R.M.S. value, form factor, representation of a sine function, concept of phasor, phasor diagrams, node and mesh analysis. Steady state analysis of R, L and C circuits to sinusoidal excitations-response of pure resistance, inductance, capacitance,	CO1, CO3, CO4,
	series RL circuit, series RC circuit, series RLC circuit, parallel RL circuit, parallel RC circuit.	05
IV	RESONANCE AND LOCUS DIAGRAMS Series Resonance: Characteristics of a series resonant circuit, Q-factor, selectivity and bandwidth, expression for half power frequencies; Parallel resonance: Q-factor, selectivity and bandwidth; Locus diagram: RL, RC, RLC with R, L and C variables.	CO1, CO3, CO4, CO5
V	NETWORK THEOREMS (DC & AC EXCITATIONS) Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Reciprocity theorem, Millman's theorem and compensation theorem	CO1, CO4, CO5

Learning Resources
Text Books:
1. Engineering Circuits Analysis, Jack Kemmerly, William Hayt and Steven Durbin, Tata Mc
Graw Hill Education, 2005, sixth edition.
2. Network Analysis, M. E. Van Valkenburg, Pearson Education, 2019, Revised Third Edition
Reference Books:
1. Fundamentals of Electrical Circuits, Charles K. Alexander and Mathew N.O. Sadiku, Mc
Graw Hill Education (India), 2013, Fifth Edition
2. Electric Circuits (Schaum's outline Series), Mahmood Nahvi, Joseph Edminister, and K.
Rao, Mc Graw Hill Education, 2017, Fifth Edition.
3. Electric Circuits, David A. Bell, Oxford University Press, 2009, Seventh Edition.
4. Introductory Circuit Analysis, Robert L Boylestad, Pearson Publications, 2023, Fourteenth
Edition.
5. Circuit Theory: Analysis and Synthesis, A. Chakrabarti, Dhanpat Rai & Co., 2018, Seventh
Revised Edition.
E-Resources:
1. <u>https://onlinecourses.nptel.ac.in/noc23_ee81/preview</u>
2. <u>https://nptel.ac.in/courses/108104139</u>
3. <u>https://nptel.ac.in/courses/108106172</u>

4. https://nptel.ac.in/courses/117106108