ENGINEERING PHYSICS LAB

Course Code	23BS1252	Year	I	Semester	II
Course Category	Basic Science	Branch	EEE	Course Type	Lab
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Identify the type of semiconductor using Hall effect and measure the thermal resistivity, energy					
	band gap [L3].					
CO2	Apply resonance to estimate the frequency of a tuning fork and verify laws of a stretched string [L3].					
CO3	Examine the optical, elastic, and dielectric properties of the given materials. [L4].					
CO4	Assess s the intensity of the magnetic field of circular coil carrying current with distance and measure resistance using four probe method [L4]					
CO5	Summarize and tabulate the experimental observations and output.					

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
					correla	itions ((3:High	ı, 2: Me	edium,	1:Low)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			3								3		
CO2	3			3								3		
CO3	3			3								3		
CO4	3			3								3		
CO5									3	3		3		

Exp.no	Contents	Mapped CO
1	Determination of dielectric constant of the various solid samples	CO3,CO5
2	Determination of wavelength of Laser light using diffraction grating.	CO3,CO5
3	Determination of the resistivity of semiconductors by four probe methods	CO4,CO5
4	Determination of energy gap of a semiconductor using p-n junction diode	CO1,CO5
5	Magnetic field along the axis of a current carrying circular coil by StewartGee's	CO4,CO5
	Method	
7	Determination of temperature coefficients of a thermistor.	CO1,CO5
8	Determination of rigidity modulus of the material of the given wire using Torsional pendulum	CO3,CO5
9	To verify the laws of transverse vibrations of a string using Sonometer.	CO2,CO5
1	Determination of Frequency of electrically maintained tuning fork by Melde's	CO2,CO5
0	experiment	

Learning Resources

References:

• A Textbook of Practical Physics-S.Balasubramanian, M.N.Srinivasan, S.Chand Publishers, 2017

Web Resources

www.vlab.co.in	
https://phet.colorado.edu/en/simulations/filt	ter?subjects=physics&type=html,prototype
	61