DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

(Common to all branches)

CourseCode	23BS1201	Year	I	Semester	II
Course Category	Basic Science	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Pre- requisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation :	70	Total Marks:	100

	Course					
	Outcomes					
Upons	Upon successful completion of the course, the student will be able to					
CO1	Interpret the basic concepts of differential equations and vector calculus (L2).					
CO2	Apply different methods to solve ordinary differential equations and partial differential equations, L-C-R Circuit problems (L3).					
CO3	Apply the differential operator to calculate the divergence and flux of vector point functions (L3).					
CO4	Analyze the given ordinary differential equation and partial differential equation to find the solution (L4).					
CO5	Analyze the given data to find work done, flux using line and surface integrals, areas and volumes using vector integral theorems (L4).					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strengthof correlations (3:High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
C01	2												1	
CO2	3												1	
CO3	3												1	
CO4		3							1	1			1	
CO5		3							1	1			1	

	SYLLABUS					
Unit No.	Contents	Mapped CO				
Ι	Differential equations of first order and first degree Linear differential equations – Bernoulli's equations- Exact equations and equations reducible to exact form. Applications: Newton's Law of cooling – Law of natural growth and decay.					
II	 Linear differential equations of higher order(Constant Coefficients) Definitions, complementary function, generalsolution, particular integral, Wronskian, Method of variation of parameters. Applications to L-C-R Circuit problems. 					
III	Partial Differential EquationsIntroduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients.					
IV	Vector differentiationScalar and vector point functions, vector operator Del, Del applies to scalar pointfunctions- Gradient, Directional derivative, del applied to vector point functionsDivergence and Curl.					
V	Vector integration Line integral-circulation-work done, surface integral-flux, Green's theorem in th plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and related problems.					
Learn	ing Resources					
	Books:					
Editio 2.Adv	gher Engineering Mathematics, B.S.Grewal, Khanna Publishers, 2017, 44th n. anced Engineering Mathematics, ErwinKreyszig,JohnWiley&Sons,2018,10th Editio rence Books:	on				
	omas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publish	ners 2018				
14t 2. Adv	h Edition. vanced Engineering Mathematics, Dennis G. Zill and Warren S. Wright, Jones and H vanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018, 50	Bartlett, 20				
4. Adv Scie	vanced Engineering Mathematics, R.K.Jain and S.R.K.Iyengar, Alpha ence International Ltd., 2021 5th Edition (9th reprint).					
	her Engineering Mathematics, B.V.Ramana, Mc Graw Hill Education, 2017					
1. <u>http</u> 2. <u>http</u>	sources: <u>bs://nptel.ac.in/courses/111/105/111105121/</u> <u>bs://nptel.ac.in/courses/111/105/111105122/</u> <u>bs://nptel.ac.in/courses/111/107/111107108/</u>					
🖌 httr	os://nptel.ac.in/courses/111/107/111107108/					