CHEMISTRY

Course Code	23BS1102	Year	I	Semester	I
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon suc	Upon successful completion of the course, the student will be able to					
CO1	Interpret fundamental concepts of chemistry. L2					
CO 2	Apply knowledge of quantum mechanics, materials and energy sources to describe and solve problems. L3					
CO3	Utilize knowledge of conducting polymers and instrumentation to design and develop new materials.L3					
CO4	Analyze bonding models, Modern engineering materials, and electrochemical processes to make informed decisions L4					
CO5	Assume the concept of polymers and instrumentation methods and their respective applications to design and develop new products. L4					
CO6	Communicate concepts and technologies related to chemistry effectively in written reports.					

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (3: High,2: Medium, 1: Low) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2								D004					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3													
CO3	3													
CO4		3												
CO5		3												
CO6									3	3		3		

SYLLABUS					
Unit	Content	Mapped			
No.	S				
	UNIT I Structure and Bonding Models:	CO1,CO2			
I	Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ 2, particle in one dimensional box, molecular orbital theory – bonding in homo-and hetero nuclear diatomic molecules – energy	CO4. CO6			
	level diagrams of O2 and CO etc. π -molecular orbitals of butadiene and				
	benzene-calculation of bond order.				
II	II UNIT II Modern Engineering materials				
	Semiconductors- Introduction, basic concept, applications.	CO4,CO6			

									
	Super conductors-Introduction ,basic concept, applications.								
	Super capacitors- Introduction, Basic Concept, Classification and								
	Applications. Nano materials-Introduction, classification, properties and								
	applications of Fullerenes, carbon Nano tubes, Graphines and nanoparticles.								
	UNIT III Electrochemistry and Applications								
	Electrochemical cell, Nernst equation, cell potential calculations and numerical								
	problems. potentiometry- potentiometric titrations (redox titrations), concept of								
	conductivity, conductivity cell, conduct metric titrations (acid-base titrations).								
III	Electrochemical sensors – potentiometric sensors with examples, amperometric	CO1,CO2							
	sensors with examples. Primary cells – Zinc-air battery, Secondary cells –	CO4,CO6							
	lithium- ion batteries- working of the batteries including cell reactions.	ĺ							
	Fuel cells- hydrogen-oxygen fuel cell- working of the cells. Polymer								
	Electrolyte Membrane Fuel cells (PEMFC).								
	UNIT IV Polymer Chemistry								
	Introduction to polymers, functionality of monomers, chain growth and step								
	growth polymerization, coordination polymerization with specific examples								
	and mechanisms of polymer formation								
IV	Plastics –Thermo and Thermosetting plastics, Preparation, properties and								
1 4	applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.	CO1,CO3							
	Elastomers–Buna-S,Buna-N–preparation, properties and applications	CO5,CO6							
	Conducting polymers – poly acetylene, poly aniline, – mechanism of								
	conduction and applications. Bio-Degradable polymers - Poly Glycolic Acid								
	(PGA), Polyl Lactic Acid (PLA).								
	UNIT V Instrumental Methods and Applications								
	Electromagnetic spectrum- Absorption of radiation- Beer-Lambert's law. UV-								
V	Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies,	CO1,CO3,							
	fundamental modes and selection rules, Instrumentation. Chromatography-	CO5,CO6							
	Basic Principle, Classification. HPLC: Principle, Instrumentation and	ĺ							
	Applications.								

Learning	Resources
Lowi min	1 tesour ces

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, Dhanpat Rai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb.2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

E-Resources:

https://nptel.ac.in/courses/103108100

https://onlinecourses.nptel.ac.in/noc23_cy19/previe

w https://nptel.ac.in/courses/118104008