Network Analysis Lab

Course Code	23EC3251	Year	I Semester		II	
Course	Engineering	Branch	ECE Course Type		Lab	
Category	Sciences					
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil	
Continuous		Semester				
Internal	30	End	70	Total Marks:	100	
Evaluation:		Evaluation:				

Course Outcomes							
	Upon successful completion of the course, the student will be able to						
CO1	Verify Kirchoff's laws and network theorems. L2						
CO2	Measure time constants of RL & RC circuits. L3						
CO3	Analyze behavior of RLC circuit for different cases. L4						
CO4	Design resonant circuit for given specifications. L4						
CO5	Characterize and model the network in terms of all network parameters. L5						
CO6	Communicate concepts and technologies related to electrical network analysis						
	effectively in written reports.						

Mapping of course outcomes with Program outcomes (CO/PO/PSO Matrix)

Note:1-Weak correlation 2-Medium correlation 3-Strong correlation

*-Average value indicates course correlation strength with mapped PO

Tiverage value indicates confection strength with mapped 10														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	3			1	1	1		1	3	1
CO2	2	2	2	2	3			1	1	1		1	3	1
CO3	2	2	2	2	3			1	1	1		1	3	1
CO4	2	2	2	2	3			1	1	1		1	3	1
CO5	2	2	2	2	3			1	1	1		1	3	1
CO6								1	1	3		2		
Average * (Rounded to nearest integer)	2	2	2	2	3			1		1		1	3	1

Syllabus						
Expt. No.	Contents	Mapped CO				
1	Study of components of a circuit and Verification of KCL and KVL.	CO1				
2	Verification of mesh and nodal analysis for AC circuits	CO1				
3	Verification of Superposition, Thevenin's & Norton's theorems for AC circuits	CO1				

4	Verification of maximum power transfer theorem for AC circuits	CO1
5	Verification of Tellegen's theorem for two networks of the sametopology	CO1
6	Study of DC transients in RL, RC and RLC circuits	CO2
7	Study frequency response of various 1st order RL & RC networks	CO2
8	Study the transient and steady state response of a 2 nd order circuit by varying its various parameters and studying their effects on responses	CO3
9	Find the Q Factor and Bandwidth of a Series and Parallel Resonancecircuit.	CO4
10	Determination of open circuit (Z) and short circuit (Y) parameters	CO5
11	Determination of hybrid (H) and transmission (ABCD) parameters	CO5
12	Measure two-port parameters of a twin-T network and study its frequency response.	CO5

Learning Resources

- 1. M.E Van Valkenburg, Network Analysis–Prentice Hall of India, Revised 3rd Ed., 2019
- 2. William H.Hayt, Jack Kemmerly, Jamie Phillips, Steven M. Durbin, Engineering Circuit Analysis, 9th Ed., 2020

Hardware Requirements

1. Regulated Power supplies, Analog/ Digital Function Generators, Digital Multimeters, Decade Resistance Boxes/ Rheostats, Decade Capacitance Boxes, Ammeters (Analog or Digital), Voltmeters (Analog or Digital), Active & Passive Electronic Components

Software requirements

Multisim/ Pspice /Equivalent simulation software tool, Computer Systems with required Specifications

e- Resources & other Digital material

- $1. \ http://www.cdeep.iitb.ac.in/nptel/Electrical\%20\&\%20Comm\%20Engg/Signals\%20and\%20System/TOC-M1.htm$
- 2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and%20System/Course%20Objective.htm.
- 3. http://www.stanford.edu/~boyd.ee102
- 4. http://www.ece.gatech.edu/users/bonnie/book
- 5. http://ocw.mit.edu
- 6. https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desktop
- 7. https://www.tutorialspoint.com/network theory/network theory quick guide.htm
- 8. https://nptel.ac.in/courses/108/105/108105159/
