Chemistry

Course Code	23BS1102	Year	I	Semester	I
Course Category	Basic Sciences	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Interpret fundamental concepts of chemistry. L2					
CO2	Apply knowledge of quantum mechanics, materials and energy sources to					
	describe andsolve problems. L3					
CO3	Utilize knowledge of conducting polymers and instrumentation to design					
	and developnew materials. L3					
CO4	Analyze bonding models, Modern engineering materials, and electrochemical					
	processes to make informed decisions L4					
CO5	Assume the concept of polymers and instrumentation methods and their					
005	respectiveapplications to design and develop new products. L4					
CO6	Communicate concepts and technologies related to chemistry effectively					
	in writtenreports.					

Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of Correlations (3: High,2: Medium, 1: Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3													
CO3	3													
CO4		3												
CO5		3												
CO6									3	3		3		

	Syllabus						
Unit No.	Contents	Mapped CO					
I	Structure and Bonding Models: Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ 2, particle in one dimensional box, molecular orbital theory – bonding in homo-and hetero nuclear diatomic molecules – energy level diagrams of O_2 and CO etc. π -molecular orbitals of butadiene and benzene-calculation of bond order.	CO-1,2,4,6					
II	Modern Engineering materials Semiconductors- Introduction, basic concept, applications. Super conductors-Introduction, basic concept, applications. Super capacitors- Introduction, Basic Concept, Classification and Applications. Nano materials-Introduction, classification, properties and applications of Fullerenes, carbon Nano tubes, Graphines and nanoparticles.	CO-1,2,4,6					
III	Electrochemistry and Applications Electrochemical cell, Nernst equation, cell potential calculations and numerical problems. potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conduct metric titrations (acid-base titrations). Electrochemical sensors — potentiometric sensors with examples, amperometric sensors with examples. Primary cells — Zinc-air battery, Secondary cells — lithium-ion batteries- working of the batteries including cell reactions. Fuel cells- hydrogen-oxygen fuel cell— working of the cells. Polymer Electrolyte Membrane Fuel cells (PEMFC).	CO-1,2,4,6					
IV	Polymer Chemistry Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization with specific examples and mechanisms of polymer formation Plastics – Thermo and Thermosetting plastics, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres. Elastomers—Buna-S, Buna-N—preparation, properties and applications. Conducting polymers – poly acetylene, poly aniline, – mechanism of conduction and applications. Bio-Degradable polymers – Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA).	CO-1,3,5,6					

	Instrumental Methods and Applications			
	Electromagnetic spectrum- Absorption of radiation- Beer-Lambert's			
	law. UV- Visible Spectroscopy, electronic transition, Instrumentation,	CO 1 2 5 6		
	law. UV- Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies, fundamental modes and selection rules,	CO-1,3,5,6		
	Instrumentation. Chromatography-Basic Principle, Classification.			
	HPLC: Principle, Instrumentation and Applications.			

Learning Resources

Text Books

- 1. Jain and Jain, Engineering Chemistry, 16th Ed., Dhanpat Rai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10th Ed.,Oxford University Press, 2010.

Reference Books

- 1. Skoog and West, Principles of Instrumental Analysis, 6th Ed., Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Ed., Wiley Publications, Feb.2008
- 3. Fred W. Billmayer Jr, Textbook of Polymer Science, 3rd Ed.

E-Resources

- 1. https://nptel.ac.in/courses/103108100
- 2. https://onlinecourses.nptel.ac.in/noc23_cy19/preview
- 3. https://nptel.ac.in/courses/118104008