

Advanced Structural Analysis

(SYLLABUS)

Course Code	23CE4501A Year III		III	Semester	I	
Course Category	Professional Elective-I	Branch	CIVIL	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Strength of Materials, Structural Analysis	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks:	100	

Course Objectives:

The objective of this course is to:

- 1. To enable students to understand and analyze the behavior of three-hinged and two-hinged arches under various loading conditions.
- 2. To equip students with approximate analytical methods for determining forces and displacements in frames subjected to gravity and lateral loads.
- 3. To impart knowledge of cable structures and suspension bridges, focusing on their behavior and response to different loadings.
- 4. To develop proficiency in the analysis of portal frames, including sway effects, using the Moment Distribution and Slope Deflection methods.
- 5. To train students in the application of Kani's method for the analysis of continuous beams and portal frames.

Course Outcomes:

Course will enable the student to:

СО	Statement				
CO 1	1. Analyze the behavior of three-hinged and two-hinged arches under various loading conditions.	L3			
CO 2	2. Apply approximate analytical methods for frames subjected to gravity and lateral loads.	L3			
CO 3	3. Analyze cable structures and suspension bridges under various loads.	L3			
CO 4	4. Analyze portal frames including sway effects, using Moment Distribution and Sloped deflection Methods.	L3			
CO 5	5. Apply Kani's method to analyze continuous beams and portal frames	L3			

Course Articulation Matrix:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	ı	-	ı	1	ı	-	-	-	-	3	-
CO2	3	2	2	ı	-	ı	ı	ı	-	-	-	-	3	-
CO3	3	2	2	ı	-	ı	ı	ı	-	-	-	-	3	-
CO4	3	3	2	2	1	ı	ı	ı	-	-	-	-	3	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-	3	-

Syllabus

Unit No	Content	Mapped COs
I	Three Hinged Arches: Elastic theory of arches – Eddy's theorem – Determination of horizontal thrust, bending moment, normal thrust and radial shear – effect of temperature. Hinges with supports at different levels. Two Hinged Arches: Determination of horizontal thrust, bending moment, normal thrust and radial shear – Rib shortening and temperature stresses.	CO1
II	Approximate Methods of Analyses: Application to building frames. (i) Portal Method (ii) Cantilever Method (iii) Substitute frame method for approximate analysis of multi-storey frames subjected to gravity loads and lateral loads. Shear force and bending moment diagrams - Elastic curve.	CO2
III	Cable Structures and Suspension Bridges: Introduction, characteristics of cable, analysis of cables subjected to concentrated and uniformly distributed loads, anchor cable, temperature stresses, analysis of simple suspension bridge.	CO3
IV	Moment Distribution Method: Analysis of Portal frames – including Sway- Substitute frame analysis by two cycle. Sloped deflection method: Analysis of Portal frames – including Sway. Shear force and bending moment diagrams - Elastic curve.	CO4
V	Kani's Method: Analysis of continuous beams-including settlement of supports and single bay portal frames without side sway. Shear force and bending moment diagrams - Elastic curve.	CO5

Learning Resource(s)

Text Book(s)

- 1. Structural Analysis by R.C. Hibbeler, Pearson, NewDelhi.
- **2.** Analysis of Structures- Vol. I and II, V. N. Vazirani and M. M. Ratwani, Khanna Publishers, New Delhi.

Reference Book(s)

- 1. Mechanics of Structures Vol II by H.J.Shah and S.B.Junnarkar, Charotar Publishing House Pvt. Ltd.
- 2. Structural Analysis by Devdas Menon, Narosa Publishing Housing Pvt. Ltd.
- 3. Structural Analysis: A Matrix Approach, G.S.Pandit and S.P.Gupta, McGraw Hill Pvt Ltd.

Web Materials:

- 1. https://archive.nptel.ac.in/courses/105/106/105106050/
- 2. https://onlinecourses.nptel.ac.in/noc25_ce110/preview