

## 23CE3552: FLUID MECHANICS&HYDRAULIC MACHINESLAB (SYLLABUS)

| Course<br>Code                       | 23CE3552             | Year                          | III   | Semester      | I          |
|--------------------------------------|----------------------|-------------------------------|-------|---------------|------------|
| Course Category                      | Professional<br>Core | Branch                        | CIVIL | Course Type   | Laboratory |
| Credits                              | 1.5                  | L-T-P                         | 0-0-3 | Prerequisites | Nil        |
| Continuous<br>Internal<br>Evaluation | 30                   | Semester<br>End<br>Evaluation | 70    | Total Marks:  | 100        |

## **Course Outcomes:**

Course will enable the student to:

| СО   | Statement                                                                                     | Blooms<br>level |
|------|-----------------------------------------------------------------------------------------------|-----------------|
| CO 1 | Apply Bernoulli's theorem to verify energy conservation in fluid flow.                        | L3              |
| CO 2 | Analyze flow measuring devices such as Venturi and orifice meters.                            | L4              |
| CO 3 | Analyze discharge coefficients using orifices and mouthpieces under varying head conditions.  | L4              |
| CO 4 | Analyze and interpret flow over notches to determine discharge characteristics                | L4              |
| CO5  | <b>Evaluate</b> energy losses in pipes due to friction, sudden changes in section, and bends. | L5              |

## **Course Articulation Matrix:**

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1 | 3   | 3   |     | 2   |     |     |     |     | 3   |      |      | 3    | 2    |
| CO2 | 3   | 3   |     | 2   |     |     |     |     | 3   |      |      | 3    | 2    |
| CO3 | 3   | 3   |     | 2   |     |     |     |     | 3   |      |      | 3    | 3    |
| CO4 | 3   | 3   |     | 2   |     |     |     |     | 3   |      |      | 3    | 2    |
| CO5 | 3   | 3   |     | 2   |     |     |     |     | 3   |      |      | 3    | 2    |
| Avg | 3   | 3   |     | 2   |     |     |     |     | 3   |      |      | 3    | 2    |

|                                       | COURSE CONTENT                                                                                          |     |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------|-----|--|--|
| Exp No-1                              | Verification of Bernoulli's equation                                                                    |     |  |  |
| Exp No-2 Calibration of Venturi meter |                                                                                                         | CO2 |  |  |
| Exp No-3                              | Calibration of orifice meter                                                                            | CO2 |  |  |
| Exp No-4                              | Determination of coefficient of discharge of a small orifice by constant head method                    | G02 |  |  |
| Exp No-5                              | Determination of coefficient of discharge of an external cylindrical mouthpiece by variable head method | CO3 |  |  |
| Exp No-6                              | Calibration of a contracted rectangular notch                                                           | CO4 |  |  |
| Exp No-7                              | Calibration of a triangular notch                                                                       | CO4 |  |  |
| Exp No-8                              | Determination of friction factor of the pipe material                                                   |     |  |  |
| Exp No-9                              | Determination of coefficient of dead loss due to a sudden expansion/contraction in a pipeline           |     |  |  |
| Exp No-10                             | Determination of head loss coefficient due to a bend in pipeline                                        |     |  |  |



|                           | LEARNING RESOURSCES                                                                                                                                                                                                                                 |  |  |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Text Books                | Laboratory Manuals                                                                                                                                                                                                                                  |  |  |  |  |  |
|                           | Laboratory Manuals available in FM Laboratory                                                                                                                                                                                                       |  |  |  |  |  |
|                           | 2. Sarbjit Singh, Experiments in Fluid Mechanics, Prentice Hall of India Pvt.                                                                                                                                                                       |  |  |  |  |  |
|                           | Ltd, Learning Private Limited, Delhi, 2012.  3. V.P. Gunta, I. Chadra and K.S. Gunta, Laboratory Manual of Fluid Mechanics                                                                                                                          |  |  |  |  |  |
|                           | 3. V.P. Gupta J. Chadra and K.S. Gupta, Laboratory Manual of Fluid Mechanics                                                                                                                                                                        |  |  |  |  |  |
| Dofovonoo                 | and Machines, CBS Publishers and Distributors, New Delhi,2006.                                                                                                                                                                                      |  |  |  |  |  |
| Reference<br>Books        | To determine the coefficient of discharge of Venturi-meter and Orifice-meter                                                                                                                                                                        |  |  |  |  |  |
| DOOKS                     | 2. (IS 14615 (Part 1): 1999 (2004), ISO 5167-1: 1991 – Measurement of Fluid Flow by Means of Pressure Differential Devices, Part 1: Orifice Plates, Nozzles and Venturi Tubes Inserted in Circular cross-section conduits running full)             |  |  |  |  |  |
|                           | <ol> <li>To determine the coefficient of discharge of mouthpiece and small orifice by<br/>constant head and falling head methods.</li> </ol>                                                                                                        |  |  |  |  |  |
|                           | 4 (IS 14615 (Part 1): 1999 (2004), ISO 5167-1: 1991 – Measurement of Fluid Flow by Means of Pressure Differential Devices, Part 1: Orifice Plates, Nozzles and Venturi Tubes Inserted in Circular cross-section conduits running full)              |  |  |  |  |  |
|                           | 5. To determine the coefficient of discharge of V-notch (triangular notch) & rectangular notch.(IS 9108: 1979 (2003) – Liquid Flow Measurement in Open Channels using Thin Plate Weirs)                                                             |  |  |  |  |  |
|                           | 6. (IS 13083: 1991(2003), IS0 4377: 1990- Liquid Flow Measurement in Open Channels - Flat-V Weirs)                                                                                                                                                  |  |  |  |  |  |
|                           | <ol> <li>To compute the friction factor using Darcy-Weisbach Equation for pipes of<br/>different diameters.</li> </ol>                                                                                                                              |  |  |  |  |  |
|                           | <ol> <li>(IS 2595 (Part I): 1965 (Reaffirmed 2003) – Head loss in Straight Pipes due to<br/>frictional resistance.</li> </ol>                                                                                                                       |  |  |  |  |  |
|                           | 9. To study the performance characteristics of Pelton wheel turbine                                                                                                                                                                                 |  |  |  |  |  |
|                           | <ol> <li>(IS 12800 ( Part 3 ): 1991 (2003) - Guidelines for Selection of Hydraulic<br/>Turbine, Preliminary Dimensioning and Layout of Surface Hydroelectric<br/>Powerhouses, Part 3 - Small, Mini And Micro Hydroelectric Power Houses)</li> </ol> |  |  |  |  |  |
|                           | 11. To study the performance characteristics of the Francis turbine                                                                                                                                                                                 |  |  |  |  |  |
|                           | 12. (IS 12800 ( Part 3 ): 1991 (2003) - Guidelines for Selection of Hydraulic Turbine, Preliminary Dimensioning and Layout of Surface Hydroelectric Powerhouses, Part 3 - Small, Mini And Micro Hydroelectric Power Houses)                         |  |  |  |  |  |
|                           | 13. To study the working principles of a centrifugal pump                                                                                                                                                                                           |  |  |  |  |  |
|                           | 14. (IS 9137: 1978 (1993) – Code for Acceptance Tests for Centrifugal, Mixed Flow and Axial Pumps - Class C)                                                                                                                                        |  |  |  |  |  |
|                           | 15. ISO 9905: 1994 - Technical specifications for centrifugal pumps —Class I                                                                                                                                                                        |  |  |  |  |  |
|                           | 16. Other codes: IS 9118: 1979 (2001) – Method for Measurement of Pressure by means of Manometers                                                                                                                                                   |  |  |  |  |  |
| e-Resources&              | 1. http://fm-nitk.vlabs.ac.in/                                                                                                                                                                                                                      |  |  |  |  |  |
| other digital<br>material | 2. https://nptel.ac.in/courses/112/105/112105171/                                                                                                                                                                                                   |  |  |  |  |  |