

# 23CE3551: GEOTECHNICAL ENGINEERING LAB

(Syllabus)

| Offering Branch | CE                  | Year: III                | Sem: I |
|-----------------|---------------------|--------------------------|--------|
| Course Category | Professional Course | Credits                  | 1.5    |
| Course Type:    | Theory              | L-T-P                    | 0-0-3  |
|                 |                     | Continuous Evaluation:   | 30     |
| Prerequisites:  |                     | Semester End Evaluation: | 70     |
|                 |                     | Total Marks:             | 100    |

### **Course Objectives:**

By the end of this course student will be able to

- ➤ To determine the index and engineering properties of soils through laboratory tests including grain size distribution, Atterberg's limits, degree of swelling (DFS), permeability, compaction, consolidation behavior, shear strength parameters, and CBR value.
- > To impart practical knowledge on soil testing methods for classification, compaction, consolidation, permeability, and shear strength determination, enabling accurate assessment of soil behavior for engineering applications.

#### **Course Outcomes:**

Upon the successful completion of this course, the students will able to:

| СО   | Statement                                                                                       | Blooms<br>level |
|------|-------------------------------------------------------------------------------------------------|-----------------|
| CO 1 | To determine basic soil properties of soil and their classification.                            | L3              |
| CO 2 | To assess field and laboratory compaction characteristics of soil                               | L3              |
| CO 3 | To evaluate permeability and consolidation behavior of soils through tests (and demonstration.) | L3              |
| CO 4 | To analyze shear strength and deformation characteristics of soil.                              | L4              |

#### **Course Articulation Matrix:**

| CO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1<br>0 | PO1<br>1 | PSO<br>1 | PSO<br>2 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|
| CO 1 | 3   | 2   | 1   | -   | 1   | 2   | 1   | 1   | 1   | 1        | 2        | 2        | 2        |
| CO 2 | 3   | 3   | 2   | -   | 1   | 2   | 1   | 1   | 1   | 1        | 2        | 2        | 2        |
| CO 3 | 3   | 2   | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1        | 2        | 2        | 2        |
| CO 4 | 3   | 3   | 3   | 2   | 1   | 2   | 1   | 1   | 1   | 1        | 2        | 2        | 2        |



#### **SYLLABUS**:

| S. No. | Exp     | LIST OF EXPERIMENTS                                    | COs        |
|--------|---------|--------------------------------------------------------|------------|
| 1      | Exp: 1  | Specific gravity                                       |            |
| 2      | Exp: 2  | Atterberg's Limits                                     |            |
| 3      | Exp: 3  | Field density-Core cutter and Sand replacement methods |            |
| 4      | Exp: 4  | Grain size analysis by sieving                         |            |
| 5      | Exp: 5  | Permeability of soil-Constant and Variable head tests  |            |
| 6      | Exp: 6  | Compaction test                                        |            |
| 7      | Exp: 7  | Consolidation test (to be demonstrated)                |            |
| 8      | Exp: 8  | Direct Shear test                                      | CO1<br>CO2 |
| 9      | Exp: 9  | Triaxial Compression test                              | CO3<br>CO4 |
| 10     | Exp: 10 | Unconfined Compression test                            |            |
| 11     | Exp: 11 | Vane Shear test                                        |            |
| 12     | Exp: 12 | Differential free swell (DFS)                          |            |
| 13     | Exp: 13 | CBR test                                               |            |
| 14     | Exp: 14 | Field Plate Load Test (Demo only)                      |            |
| 15     | Exp: 15 | Field CBR (Demo only)                                  |            |
| 16     | Exp: 16 | Relative density of Sand                               |            |

(Atleast Eight experiments shall be conducted)

# **Learning Resource(s)**

## Text Book(s)/Reference Book(s)

- 1. I.S. 2720 series: Methods of Test for Soils (Part 1 to 41) Bureau of Indian Standards
- 2. K.R. Arora, "Soil Mechanics and Foundation Engineering", Standard Publishers
- 3. Braja M. Das, "Principles of Geotechnical Engineering", Cengage Learning.
- 4. Basic and Applied Soil Mechanics Gopal Ranjan and A.S.R.Rao, New Age International Publishers

#### e-learn

https://nptel.ac.in/courses/105101201