

23CE3503: GEOTECHNICAL ENGINEERING- I (SYLLABUS)

Course Code	23CE3503	Year III Semes		Semester	Ι	
Course Category	Professional Core	Branch	CIVIL	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisite s	-	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks:	100	

Course Objectives:

The objective of this course is to:

- 1. To enable the student to determine the index properties of the soil and classify it.
- 2. To impart the concept of seepage of water through soils and determine the discharge of water through soils.
- 3. To impart the principles of compaction and consolidation of soils and determine the magnitude and the rate of consolidation settlement.
- 4. To enable the student to understand the concept of shear strength of soils, determine the shear parameters of sands and clays and the areas of their application.

Course Outcomes:

Course will enable the student to:

CO	Statement	Blooms level
CO 1	Understand and interpret the soil properties, phase relationships, index properties, and classification systems for engineering use	L4
CO 2	Examine the flow of water through soils, understand capillary action, effective stress principles, and determine permeability in soil systems.	L4
CO 3	Evaluate seepage problems using flow nets and interpret the stress distribution under various surface loads.	L4
CO 4	Assess compaction and consolidation characteristics of soils.	L4
CO 5	Compare shear strength behavior under various drainage conditions and interpret stress-strain responses.	L4

Course Articulation Matrix:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	-	-	1	1	1	1	-	1	2	-
CO2	3	2	2	-	-	1	1	1	1	-	1	2	1
CO3	3	2	2	1	-	1	1	1	1	-	1	2	1
CO4	3	2	2	2	1	1	1	1	1	-	1	2	1
CO5	3	2	2	2	1	1	1	1	1	-	1	2	1

Syllabus

Unit No	Content	Mapped COs
I	Introduction: Soil formation – Structure of Soils – Texture of Soils – Three phase system and phase relationships. Index Properties and Classification Tests of Soils: Index properties – Density Index - Grain size analysis – Sieve and Hydrometer methods – Consistency of Clay Soils – Activity of Clays – Thixotropy of clays - soil Classification – Unified soil classification and I.S. Soil classification.	CO1
п	Soil moisture and Capillarity: Soil moisture and modes of occurrence – Total, Neutral and Effective Pressures – Capillary Rise in soils. Permeability: Flow of water through soils — One dimensioned flow of water through soils — Darcy's law- permeability — Factors affecting — laboratory determination of coefficient of permeability — Permeability of layered systems.	CO1, CO2
Ш	Seepage and Flow Nets: Flow net for one-dimensional flow – two-dimensional flow – Basic equation for Seepage – Flow nets & Characteristics and Uses – Quicksand condition –Seepage forces Stress Distribution in Soils: Stresses induced by applied loads - Boussinesq's and Westergaard's theories for point loads and areas of different shapes– Newmark's influence chart – 2:1 stress distribution method Pressure Blubs.	CO3
IV	Compaction: Mechanism of compaction – factors affecting – effects of compaction on soil properties - compaction control. Consolidation: Compressibility of soils – e-p and e-log p curves – Stress history – Concept of consolidation - Spring Analogy - Terzaghi's theory of one-dimensional Consolidation – Time rate of consolidation and degree of consolidation – Determination of coefficient of consolidation (c _v) - Over consolidated and normally consolidated clays.	CO4, CO5
V	Shear Strength of Soils: Basic mechanism of shear strength - Mohr – Coulomb Failure theories – total and effective shear strength parameters – Stress-Strain behavior of Sands - Critical Void Ratio – Stress-Strain behavior of clays – Shear Strength determination- various drainage conditions – stress paths.	CO2, CO4, CO5

Learning Resource(s)

Text Book(s)

- 1. 'Soil Mechanics and Foundation Engineering by Dr. K.R. Arora, Standard Publishers and Distributors, New Delhi.
- 2 Basic and Applied Soil Mechanics by Gopal Ranjan and A.S.R.Rao, New Age International Publishers.
- 3. 'Soil Mechanics and Foundation Engineering' by V.N.S.Murthy, CBS publishers
- 4. 'Geotechnical Engineering' by C. Venkataramaiah, New Age International Publishers.

Reference Book(s)

- 1. 'Fundamentals of Soil Mechanics' by D.W.Taylor., Wiley.
- 2. 'An introduction to Geotechnical Engineering' by Holtz and Kovacs; Prentice Hall
- 3. Principles of Geotechnical Engineering, BrajaM.Das, Cengage Learing

Web Materials:

- 1. https://archive.nptel.ac.in/courses/105/101/105101201/
- 2. https://archive.nptel.ac.in/courses/105/105/105105168/