

ENGINEERING HYDROLOGY

(SYLLABUS)

Course Code	23CE3502	Year	III	Semester	I	
Course Category	Professional Core	Branch	CIVIL	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	20CE3 301 - Mecha nics of Fluids	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks:	100	

Course Objectives:

The objective of this course is to:

- 1. Understand hydrologic cycle and its relevance to Civil engineering.
- 2. Learn physical processes and their interactions in hydrology.
- 3. Learn measurement and estimation of the components of hydrologic cycle.
- 4. Have an overview and understanding of Hydrographs.
- 5. Learn flood frequency analysis, design flood and flood routing methods.
- 6. Study the concepts of groundwater movement and well hydraulics.

Course Outcomes:

Course will enable the student to:

CO	Statement	Blooms level
CO 1	Understand the fundamentals of engineering hydrology and precipitation, and analyze rainfall data for hydrologic applications.	L3
CO 2	Analyze abstractions in the hydrologic cycle such as evaporation, infiltration, and evapotranspiration, and their impact on surface and groundwater systems.	L3
CO 3	Apply runoff estimation methods and hydrograph analysis to model surface flow and support flood prediction.	L3
CO 4	Perform statistical flood frequency analysis and suggest appropriate flood management strategies.	L4
CO 5	Apply the principles of aquifer properties and use Darcy's law and Dupuit's equation to analyze groundwater flow in confined and unconfined aquifers.	L3

Course Articulation Matrix:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	2	2	_		_	_	_	1	3	_
CO2	3	2	2	2	1	_	_	_	_	_	1	2	_
CO3	3	3	2	3	2	_	_	_	_	_	1	3	_
CO4	3	3	3	3	2	2	_	_	_	_	1	3	_
CO5	3	3	3	2	2	_	_	_	_	_	1	3	_

Syllabus

Unit No	Content	Mapped COs
I	Introduction: Engineering hydrology and its applications, Hydrologic cycle, hydrological data-sources of data. Precipitation: Types and forms, measurement, rain gauge network, presentation of rainfall data, average rainfall, continuity and consistency of rainfall data, frequency of rainfall, Intensity-Duration-Frequency (IDF) curves, Depth-Area-Duration (DAD) curves, Probable Maximum Precipitation (PMP)	CO1
п	Abstractions: Initial abstractions, Evaporation: factors affecting, measurement, estimation, reduction, Evapotranspiration: factors affecting, measurement, estimation, control. Infiltration: factors affecting, Infiltration capacity curve, measurement, infiltration indices.	CO1, CO2
III	Runoff: Factors affecting runoff, components, empirical formulae, tables and curves, stream gauging, rating curve, flow mass curve and flow duration curve. Hydrograph analysis: Components of hydrograph, separation of base flow, effective rainfall hyetograph and direct runoff hydrograph, unit hydrograph, assumptions, derivation of unit hydrograph, unit hydrographs of different durations, principle of superposition and S-hydrograph methods, limitations and applications of unit hydrograph, synthetic unit hydrograph, introduction to IUH.	CO1, CO3
IV	Floods: Causes and effects, frequency analysis- Gumbel's and Log-Pearson type III distribution methods, Standard Project Flood (SPF) and Probable Maximum Flood (MPF), flood control methods and management.	CO3, CO4
V	Groundwater: Occurrence, types of aquifers, aquifer parameters, porosity, specific yield, permeability, transmissivity and storage coefficient, types of wells, Darcy's law, Dupuit's equation- steady radial flow to wells in confined and unconfined aquifers, yield of an open well- recuperation test.	CO2, CO5

Learning Resource(s)

Text Book(s)

- 1. 'Engineering Hydrology' by Subramanya, K, Tata McGraw-Hill Education Pvt Ltd, (2013), New Delhi.
- 2 'Engineering Hydrology' by Jayarami Reddy, P, Laxmi Publications Pvt. Ltd., (2013), New Delhi
- 3. 'Applied hydrology' by Chow V.T., D.R Maidment and L.W. Mays, Tata McGraw Hill Education Pvt Ltd, (2011), New Delhi.
- 4. 'Engineering Hydrology' by Ojha C.S.P, R. Berndtsson and P. Bhunya, Oxford University Press, (2010).

Reference Book(s)

- 1. 'Water Resources Engineering', Mays L.W, Wiley India Pvt. Ltd, (2013).
- 2. 'Hydrology' by Raghunath. H.M., New Age International Publishers, (2010)
- 3. 'Engineering Hydrology Principles and Practice' by Ponce V.M., Prentice Hall International, (1994)
- 4. 'Hydrology and Water Resources Engineering' by Patra K.C., Narosa Publications, (2011).

Web Materials:

- 1. https://onlinecourses.nptel.ac.in/noc24_ce10/preview
- 2. https://archive.nptel.ac.in/courses/105/101/105101002/