

23CE3501: DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES

(SYLLABUS)

Course Code	20CE3501	Year	III	Semester	I
Course Category	Professional Core	Branch	CIVIL	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	A. Engineering Mechanics B. Strength of Materials
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks:	100

Course Objectives:

The objective of this course is:

- 1. Familiarize Students with different types of design philosophies.
- 2. Equip student with concepts of design of flexural members.
- 3. Understand Concepts of shear, bond and torsion.
- 4. Familiarize students with different types of compressions members and Design, Understand different types of footings and their design.
- 5. Familiarize students with different types of slabs and waist slab staircase

Course Outcomes:

Course will enable the student to:

СО	Statement				
CO 1	Understand the fundamental concepts and design philosophies of reinforced	1.2			
	concrete structures.	1.2			
CO 2	Apply Limit State Design principles for flexural, shear, torsion, and serviceability	1.3			
	requirements in beams and slabs.	Lo			
CO 3	Analyze and design reinforced concrete structural elements like beams, slabs, and	L5			
	columns using IS Code provisions.	LS			
CO 4	Design structural elements to ensure safety, stability, and serviceability under	1.6			
CO 4	different loading conditions.	LU			
CO 5	Interpret and apply IS codal provisions to design isolated footings and structural	1.4			
CO 3	elements subjected to combined actions.	174			

Course Articulation Matrix:

CO\P O/PS O	PO1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2
CO1	2	2	1	1		_	2	_	_	_	2	2	2
CO2	2	3	3	2	-	_	3	_	_	_	2	3	3
CO3	3	3	3	2	-	_	3	_	1	_	2	3	3
CO4	2	3	3	2	-	_	3	_		_	2	3	3
CO5	2	3	3	2	-	_	3	_	_	_	2	3	2

Syllabus

Unit No	Content	Mapped COs
I	Introduction: Working stress method, Design codes and handbooks, loading standards – Dead, live, wind and earthquake loads, elastic theory, design constants, modular ratio, neutral axis depth and moment of resistance, balanced, under-reinforced and over-reinforced sections, working stress method of design of singly reinforced beams. Limit State Design: Concepts of limit state design – Basic statistical principles – Characteristic loads – Characteristic strength – Partial load and safety factors – representative stress-strain curves for cold worked deformed bars and mild steel bars. Assumptions in limit state design – stress - block parameters – limiting moment of Resistance.	CO1, CO4
II	Design for Flexure: Limit state analysis and design of singly reinforced rectangular sections- effective depth- Moment of Resistance- Doubly reinforced rectangular beam sections- Minimum depth for a given capacity-Limiting Percentage of Steel- Minimum Tension Reinforcement-Maximum Flexural Steel- Design of Flanged Sections (T)- Effective width of flange –Behavior-Analysis and Design.	CO1, CO2, CO3, CO4
Ш	Design for Shear, Torsion and Bond: Limit state analysis and design of section for shear and torsion for L Beam – Introduction to concept of bond, anchorage and development length, I.S. code provisions. Limit state design for serviceability: Introduction to Deflection, cracking and code provision.	CO2, CO3,
IV	 Design of Compression members: Effective length of a column, Design of short and long columns – under axial loads, uniaxial bending – I S Code provisions. Footings: Different types of footings – Design of isolated footings, square footings – Rectangular footings – circular footing - subjected to axial loads. 	CO3, CO4, CO5
V	Slabs: Classification of slabs, design of one - way slabs, two - way slabs, IS Codal Provisions, design of waist-slab staircase.	CO2, CO3,

NOTE: All the designs to be taught in Limit State Method. Drawing classes must be conducted every week and the Following plates should be prepared by the students.

- Reinforcement detailing of T-beams, L-beams.
- Reinforcement detailing of columns and isolated footings.
- Detailing of one-way, two-way slabs and waist-slab staircase.

FINAL EXAMINATION PATTERN:

The end examination paper should consist of Part A and Part B. Part A consists of two questions in Design and Drawing out of which one question is to be answered. Part B should consist of five questions and design out of which three are to be answered. Weight-age for Part – A is 40% and Part- B is 60%.

Learning Resource(s)

Text Book(s)

- 1. 'Limit State Design' by A. K. Jain
- 2. 'Reinforced Concrete Structures' by S. Unnikrishna Pillai &Devdas MenonTata Mc.Graw Hill, New Delhi.

Reference Book(s)

- 1. 'Design of concrete structures' by N. Krishna Raju.
- 2. 'Reinforced Concrete Structures' by Park and Pauley, John Wiley and Sons

IS Codes:

- 1. IS -456-2000 (Permitted to use in examination hall)
- 2. IS 875
- 3. SP-16

Web Materials:

1. https://nptel.ac.in/courses/105105105