Course	23BS1204	Year	Ι	Semester	II			
Code								
Course	Basic	Branch	CE	Course Type	Theory			
Category	Sciences	Dranen	01	Course Type	111001			
Credits	3	L-T-P	3-0-0	Prerequisites	NIL			
Continuous Internal Evaluation:	30	ENCINEERIN End Evaluation:	G CHEMISTR 70	Y Total Marks :	100			

ENGINEERING CHEMISTRY (Common to CE,ME)

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Interpret fundamental concepts of engineering chemistry. (L2)					
CO2	Apply knowledge of water treatment methods, corrosion technology, electrochemical					
	energy systems, and polymerization to solve problems. (L3)					
CO3	Utilize knowledge of colloids, micelle formation, and nanomaterial's to design and develop new					
000	materials.(L3)					
CO4	Analyze the characteristics and performance of water, corrosion controlling methods,					
	polymers, and fuels to make informed decisions. (L4)					
CO5	Analyze the applications of modern engineering materials.(L4)					
200						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:High,2: Medium, 1:Low)														
	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2												1	
CO2	3													1
CO3	3												1	1
CO4		3							1	1				1
CO5		3							1	1			1	1

SYLLABUS						
Unit No.	Contents	Mapped CO				
Ι	Water Technology Soft and hard water, Estimation of hardness of water by EDTA Method, Estimation of dissolved Oxygen - Boiler troubles –Priming, foaming, scale and sludge, Caustic embrittlement, Industrial water treatment – Specifications for drinking water, Bureau of Indian Standards (BIS) And World health organization(WHO) standards, Ion-exchange processes - desalination of Brackish water, reverse osmosis (RO) and electro-dialysis.	CO1,CO2, CO4				
II	Electrochemistry and Applications of Electrodes –electrochemical cell, Nerns equation, cell potential calculations. Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteries- working principle of the batteries including cell reactions; Fuel cells-Basic Concepts, the principle and working of hydrogen-oxygen Fuel cell. Corrosion: Introduction to corrosion, electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion, metal oxide formation by dry electrochemical corrosion, Pilling Bedworth ratios and uses, Factors affecting the corrosion, cathodic and anodic protection, electroplating and electro less plating (Nickel and Copper).	CO1,CO2 CO4				
III	Polymers and Fuel Chemistry Introduction to polymers, functionality of monomers, Mechanism of chain growth, step growth polymerization. Fuels – Types of fuels, calorific value of fuels, numerical problems based on calorific value; Analysis of coal (Proximate and Ultimate analysis), Liquid Fuels, refining of petroleum, Octane and Cetane number- alternative fuels- propane, methanol, ethanol and bio fuel- bio diesel.	CO1,CO2 CO4				
IV	 Modern Engineering Materials Composites- Definition, Constituents, Classification- Particle, Fibre and Structural reinforced composites, properties and Engineering applications Refractories- Classification, Properties, Factors affecting the refractory materials and Applications. Lubricants- Classification, Functions of lubricants, Mechanism, Properties of lubricating oils Viscosity, Viscosity Index, Flash point, Fire point, Cloud point, saponification and Applications. Building materials- Portland Cement, constituents, Setting and Hardening of cement. 	CO1,CO3 CO5				
V	Surface Chemistry and Nanomaterials Introduction to surface chemistry, colloids, nano metals and nano metal oxides, micelle formation, synthesis of colloids (Braggs Method), chemical and biological methods of preparation of nanometals and metal oxides, stabilization of colloids and nanomaterials by stabilizing agents, adsorption isotherm (Freundlich and Longmuir), BET equation (no derivation) applications of colloids and nanomaterials – catalysis, medicine, sensors, etc.	CO1,CO3 CO5				

Learning Resources

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

1. H.F.W. Taylor, Cement Chemistry, 2/e, Thomas Telford Publications, 1997.

- 2. D.J.Shaw, Introduction to Colloids and Surface Chemistry, Butterworth-Heineman, 1992.
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

E-Resources:

https://nptel.ac.in/courses/105107207

https://archive.nptel.ac.in/courses/113/104/113104082/

https://archive.nptel.ac.in/courses/104/106/104106129/

https://archive.nptel.ac.in/courses/103/105/103105110/

https://nptel.ac.in/courses/118104008