PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY KANURU, VIJAYAWADA I B.Tech – II Semester (Common to CSE, IT, CSE (AI&ML), CSE (Data Science)) DATA STRUCTURES LAB

Course Code:	23CS3251	Year:	Ι	Semester:	Π
Course Category:	Professional Core	Branch:	CSE	Course Type:	Practical
Credits:	1.5	L-T-P:	0-0-3	Prerequisites:	Computer Programming Lab
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	COURSE OUTCOMES					
Upon	successful completion of the course, Student will be able to:					
CO1	Apply Linear and non-linear data structures for solving problems.	L3				
CO2	Implement programs as an individual on different IDEs.	L3				
CO3	Develop an effective report based on various programs implemented.	L3				
CO4	Apply technical knowledge for a given problem and express with an effective oral communication.	L3				
CO5	Analyze outputs using given constraints/test cases.	L4				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: Substantial, 2: Moderate, 1: Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	1 3												3	
со	2 2				1									
со	3									3				
со	4									3				
СО	5	3										2		

	Syllabus	
Unit No.	Contents	Mapped CO
1.	 Exercise 1: Array Manipulation i) Write a program to reverse an array. ii) C Programs to implement the Searching Techniques – Linear & BinarySearch 	CO1, CO2, CO3,CO4, CO5
2.	Exercise 2: Sorting i) C Programs to implement Sorting Techniques – Bubble sort, Selection sort and Insertion Sort	CO1, CO2, CO3,CO4, CO5
3.	Exercise 3: Linked List Implementationi) Implement a singly linked list and perform insertion and deletion operations.ii) Develop a program to reverse a linked list iteratively and recursively.iii) Find minimum and maximum element in a linked list.	CO1, CO2, CO3,CO4, CO5
4.	Exercise 4: Linked List Applicationsi) Implement a linked list to represent polynomials and perform addition.ii) Develop a program to append one linked list to the end of the other.iii) Implement a circular linked list and perform insertion, deletion, and traversal.	CO1, CO2, CO3,CO4, CO5
5.	Exercise 5: Doubly Linked List Implementation i) Implement a doubly linked list and perform insertion and deletion operations.	CO1, CO2, CO3,CO4, CO5
6.	 Exercise 6: Stack Operations i) Implement a stack using arrays and linked lists. ii) Write a program to evaluate a postfix expression using a stack. iii) Implement a program to check for balanced parentheses using a stack. 	CO1, CO2, CO3,CO4, CO5
7.	Exercise 7: Queue Operationsi) Implement a queue using arrays and linked lists.ii) Implement a circular queue and perform insertion and deletion operations.	CO1, CO2, CO3,CO4, CO5
8.	Exercise 8: Stack and Queue Applicationsi) Use a stack to evaluate an infix expression and convert it to postfix.ii) Create a program to determine whether a given string is a palindrome or not.	CO1, CO2, CO3,CO4, CO5
9.	Exercise 9: Binary Search Tree i) Implementing a BST using Linked List. ii) Traversing of BST.	CO1, CO2, CO3,CO4, CO5
10.	Exercise 10: Hashing i) Implement a hash table with collision resolution techniques.	CO1, CO2, CO3,CO4, CO5

Te	ext Books
1.	Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition, 2002, Pearson.
2.	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, CliffordStein, Third Edition, 2010, PHI.
3.	Data Structures and Algorithms Made Easy by Narasimha Karumanchi, 2020, CareerMonk Publications.
4.	Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008.
Re	ferences
1.	Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders.
2.	C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E.
	Hopcroft.
3.	Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum.
4.	Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
5.	Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms by Robert Sedgewick.
e-]	Resources & other digital material
1.	https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
2.	http://www.algomation.com/algorithm/single-linked-list-insert-delete
3.	http://www.algomation.com/algorithm/binary-tree-insert-delete-display
4.	https://www.youtube.com/watch?v=AfYqN3fGapc
5. 6.	https://www.youtube.com/watch?v=7vw2iIdqHlM http://littlesvr.ca/dsa-html5-animations/sorting.php