ENGINEERING PHYSICS LAB

Course	23BS1252	Vaca	T	Compactor	II
Code	23031232	Year	1	Semester	11
Course Category	Basic Science	Branch	CSE	Course Type	Lab
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous Internal	30	Semester End Evaluation:	70	Total Marks:	100
Evaluation:					

	Course Outcomes					
Upon su	Upon successful completion of the course, the student will be able to					
CO1	Identify the type of semiconductor using Hall effect and measure the thermal					
	resistivity, energy band gap [L3].					
CO2	Apply resonance to estimate the frequency of a tuning fork and verify laws of a stretched					
CO2	string [L3].					
CO3	Examine the optical, elastic, and dielectric properties of the given materials. [L4].					
CO4	Assess s the intensity of the magnetic field of circular coil carrying current with					
	distance and measure resistance using four probe method [L4]					
CO5	Summarize and tabulate the experimental observations and output.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

							_							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			3								3		
CO2	3			3								3		
CO3	3			3								3		
CO4	3			3								3		
CO5									3	3		3		

Exp.no	Contents	Mapped
		CO
1	Determination of dielectric constant of the various solid samples	CO3,CO5
2	Determination of wavelength of Laser light using diffraction grating.	CO3,CO5
3	Determination of the resistivity of semiconductors by four probe methods	CO4,CO5
4	Determination of energy gap of a semiconductor using p-n junction diode	CO1,CO5
5	Magnetic field along the axis of a current carrying circular coil by StewartGee's	CO4,CO5
	Method	
6	Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall effect	CO1,CO5
7	Determination of temperature coefficients of a thermistor.	CO1,CO5
8	Determination of rigidity modulus of the material of the given wire using Torsional pendulum	CO3,CO5
9	To verify the laws of transverse vibrations of a string using Sonometer.	CO2,CO5
10	Determination of Frequency of electrically maintained tuning fork by Melde's	CO2,CO5
	Experiment	

Learning Resources						
Referen •	ces: A Textbook of Practical Physics-S.Balasubramanian, M.N.Srinivasan, S.Chand Publishers, 2017					
	sources					
•	www.vlab.co.in					
•	https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype					