Computer Programming Lab

(Common to all Branches)

Course Code	23ES1152	Year	I	Semester	I
Course Category	Engineering Sciences	Branch	CSE	Course Type	Lab
Credits	1.5	L-T-P	$0-0-3$	Prerequisites	Basic Mathematics
Continuous Internal Evaluation:	30	Semester End Exam:	70	Total Marks:	100

Course Outcomes		
Upon successful completion of the course, the student will be able to		
CO1	Apply C programming language constructs to solve the given problem.	L2
CO2	Implement programs as an individual on different IDE's/ online platforms.	L3
CO3	Develop an effective report based on various programs implemented.	L3
CO4	Apply technical knowledge for a given problem and express it with effective oral communication.	L3
CO5	Analyze outputs using given constraints/test cases.	L4

Contribution of Course Outcomes towards achievement of Program Outcomes \& Strength of correlations (3: Substantial, 2: Moderate, 1: Slight)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2	2				1									
CO3										3				
CO4										3				
CO5		3										1		

Syllabus		
$\begin{gathered} \text { Expt. } \\ \text { No. } \end{gathered}$	Contents	Mapped CO
I	WEEK 1 Objective: Getting familiar with the programming environment on the computer and writing the first program. Suggested Experiments/Activities: Tutorial 1: Problem-solving using Computers. Lab1: Familiarization with programming environment. i) Basic Linux environment and its editors like Vi, Vim \& Emacs etc. ii) Exposure to Turbo C, gcc iii) Writing simple programs using printf(), scanf()	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \end{aligned}$
II	WEEK 2 Objective: Getting familiar with how to formally describe a solution to a problem in a series of finite steps both using textual notation and graphic notation. Suggested Experiments /Activities: Tutorial 2: Problem-solving using Algorithms and Flow charts. Lab 2: Converting algorithms/flow charts into C Source code. Developing the algorithms/flowcharts for the following sample programs i) Sum and average of 3 numbers ii) Conversion of Fahrenheit to Celsius and vice versa iii) Simple interest calculation	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO4}, \\ & \mathrm{CO5} \end{aligned}$
III	WEEK 3 Objective: Learn how to define variables with the desired datatype, initialize them with appropriate values and how arithmetic operators can be used with variables and constants. Suggested Experiments/Activities: Tutorial 3: Variable types and type conversions. Lab 3: Simple computational problems using arithmetic expressions. i) Finding the square root of a given number ii) Finding compound interest iii) Area of a triangle using heron's formulae iv) Distance travelled by an object	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO2}, \\ & \mathrm{CO}, \\ & \mathrm{CO4}, \\ & \mathrm{CO5} \end{aligned}$
IV	WEEK 4 Objective: Explore the full scope of expressions, type-compatibility of variables \& constants and operators used in the expression and how operator precedence works. Suggested Experiments/Activities: Tutorial 4: Operators and the precedence and as associativity. Lab 4: Simple computational problems using the operator' precedence and associativity i) Evaluate the following expressions. a. $\mathrm{A}+\mathrm{B} * \mathrm{C}+(\mathrm{D} * \mathrm{E})+\mathrm{F} * \mathrm{G}$	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \end{aligned}$

$\left.\begin{array}{|l|l||||||}\hline & \begin{array}{l}\text { b. A/B*C-B+A*D/3 } \\ \text { c. A+++B---A } \\ \text { d. J }=(i++)+(++i)\end{array} \\ \text { ii) Find the maximum of three numbers using conditional operator. } \\ \text { iii) Take marks of 5 subjects in integers, and find the total, average in float. }\end{array}\right]$.

VIII	WEEK 8: Objective: Explore the difference between other arrays and character arrays that can be used as Strings by using null character and get comfortable with string by doing experiments that will reverse a string and concatenate two strings. Explore sorting solution bubble sort using integer arrays. Suggested Experiments/Activities: Tutorial 8: 2 D arrays, sorting and Strings. Lab 8: Matrix problems, String operations, Bubble sort i) Addition of two matrices. ii) Multiplication two matrices. iii) Sort array elements using bubble sort. iv) Concatenate two strings without built-in functions. v) Reverse a string using built-in and without built-in string functions.	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \end{aligned}$
IX	WEEK 9: Objective: Explore pointers to manage a dynamic array of integers, including memory allocation \& value initialization, resizing changing and reordering the contents of an array and memory de-allocation using malloc (), calloc (), realloc () and free () functions. Gain experience processing command-line arguments received by C. Suggested Experiments/Activities: Tutorial 9: Pointers, structures and dynamic memory allocation Lab 9: Pointers and structures, memory dereference. i) Write a C program to find the sum of a 1D array using malloc(). ii) Write a C program to find the total, average of n students using structures. iii) Enter n students data using calloc() and display failed students list. iv) Read student name and marks from the command line and display the student details along with the total. v) Write a C program to implement realloc().	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO5} \end{aligned}$
X	WEEK 10: Objective: Experiment with C Structures, Unions, bit fields and selfreferential structures (Singly linked lists) and nested structures Suggested Experiments/Activities: Tutorial 10: Bitfields, Self-Referential Structures, Linked lists Lab10: Bitfields, linked lists i) Read and print a date using $\mathrm{dd} / \mathrm{mm} /$ yyyy format using bit-fields and differentiate the same without using bit-fields ii) Create and display a singly linked list using self-referential structure. iii) Demonstrate the differences between structures and unions using a C program. iv) Write a C program to shift/rotate using bit-fields. v) Write a C program to copy one structure variable to another structure of the same type.	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \end{aligned}$
	WEEK 11: Objective: Explore the Functions, sub-routines, scope and extent of variables, doing some experiments by parameter passing using call by value. Basic methods of numerical integration	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \hline \end{aligned}$

	Suggested Experiments/Activities: Tutorial 11: Functions, call by value, scope and extent, Lab 11: Simple functions using call by value, solving differential equations using Eulers theorem. i) Write a C function to calculate NCR value. ii) Write a C function to find the length of a string. iii) Write a C function to transpose of a matrix. iv) Write a C function to demonstrate numerical integration of differential equations using Euler's method.
	WEEK 12: Objective: Explore how recursive solutions can be programmed by writing recursive functions that can be invoked from the main by programming at- least five distinct problems that have naturally recursive solutions. Suggested Experiments/Activities: Tutorial 12: Recursion, the structure of recursive calls Lab 12: Recursive functions i) Write a recursive function to generate Fibonacci series. ii) Write a recursive function to find the lcm of two numbers. iii) Write a recursive function to find the factorial of a number. iv) Write a C Program to implement Ackermann function using recursion. v) Write a recursive function to find the sum of series.
WEEK 13: Objective: Explore the basic difference between normal and pointer variables, Arithmetic operations using pointers and passing variables to functions using pointers Suggested Experiments/Activities: Tutorial 13: Call by reference, dangling pointers Lab 13: Simple functions using Call by reference, Dangling pointers. i) Write a C program to swap two numbers using call by reference. ii) Demonstrate Dangling pointer problem using a C program. iii) Write a C program to copy one string into another using pointer. iv) Write a C program to find no of lowercase, uppercase, digits and other characters using pointers.	
WEEK14: Objective: To understand data files and file handling with various file I/O functions. Explore the differences between text and binary files. Suggested Experiments/Activities: Tutorial 14: File handling Lab 14: File operations i) Write a C program to write and read text into a file. ii) Write a C program to write and read text into a binary file using fread() and fwrite().	
iii)Copy the contents of one file to another file. iv)Write a C program to merge two files into the third file using command-line arguments. v)Find no. of lines, words and characters in a file vi)Write a C program to print last n characters of a given file.	CO1,

Learning Resources

Text Books

1. Ajay Mittal, Programming in C: A practical approach, Pearson.
2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw Hill

Reference Books

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, PrenticeHall of India
2. C Programming, A Problem-Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE

e- Resources \& other digital material

1. https://www.geeksforgeeks.org/c-programming-language/
2. https://www.greatlearning.in/academy/learn-for-free/courses/c-programming
3. https://onlinecourses.nptel.ac.in/noc22 cs101/course
