DATA STRUCTURES

(Common to CSE, IT, CSE (AI & ML), CSE (Data Science))

Course Code:	23DS3201	Year:	I Semester:		П	
Course Category:	Professional Core	Branch:	CSE(DS)	Course Type:	Theory	
Credits:	3	L-T-P:	3-0-0 Prerequisites:		Introduction to Programming	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	COURSE OUTCOMES					
Upon successful completion of the course, Student will be able to:						
CO1	Describe different linear and non-linear data structures.	L2				
CO2	Make use of linear data structures to implement searching, sorting algorithms.	L3				
CO3	Apply suitable linear and non-linear data structures to solve the various problems.	L3				
CO4	Analyze suitable data structures to solve various problems.	L4				

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: Substantial, 2: Moderate, 1: Slight)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1													
CO2	2													
СОЗ	3													
CO4		2										2		

Unit No.	COURSE CONTENTS					
UNIT-1	Introduction to Linear Data Structures: Definition and importance of linear data structures, Abstract data types (ADTs) and their implementation, Overview of time and space complexity analysis. Searching Techniques: Linear & Binary Search. Sorting Techniques: Bubble sort, Selection sort, Insertion sort.	CO1, CO2				
UNIT-II	Linked Lists: Singly linked lists: representation and operations, doubly linked lists, representation and operations and circular linked lists: representation and operations, Comparing arrays and linked lists.					
UNIT- III	Stacks: Introduction to stacks: properties and operations, implementing stacks using arrays and linked lists, Applications of stacks: infix to postfix conversion, expressionevaluation, balanced parentheses.	CO1, CO3,				

UNIT- IV	Queues: Introduction to queues: properties and operations, implementing queues using arrays and linked lists. Circular Queue: Introduction, representation, properties and operations on circular queue.	CO1, CO3, CO4
UNIT-V	Trees: Introduction to Trees, Binary Search Tree – Insertion, Deletion & Traversal (Recursion Only). Hashing: Brief introduction to hashing and hash functions, Collision resolution techniques: chaining and open addressing.	CO1, CO3,

Learning Resources

Text Books

- 1. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition, 2002, Pearson.
- 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Third Edition, 2010, PHI.
- 3. Data Structures and Algorithms Made Easy by Narasimha Karumanchi, 2020, CareerMonk Publications.

References

- 1. Fundamental of Data Structures in C, Horowitz, Sahani, Anderson-Freed, Second Edition, 2008, Universities Press.
- 2. Classic Data Structures, Debasis Samantha, Second Edition, 2009, PHI.
- 3. Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders.
- 4. C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft.
- 5. Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum.
- 6. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
- 7. Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick.

e-Resources and other Digital Material

- 1. http://cse.iitkgp.ac.in/pds/
- 2. http://cmpe.emu.edu.tr/bayram/courses/231/LectureNotesSlides/IQBAL/Lecture%20Notes
- 3. https://www.geeksforgeeks.org/data-structures/
- 4. https://www.programiz.com/dsa
- 5. https://www.tutorialspoint.com/data_structures_algorithms/index.htm